Contents

1 Standard Information 4
 Using Flowserve Valves, Actuators and Accessories Correctly 4
 1.1 Terms Concerning Safety 4
 1.2 General Usage 5
 1.3 Protective Clothing 5
 1.4 Qualified Personnel 5
 1.5 Other Requirements for In-plant Installation 5
 1.6 Spare Parts 6
 1.7 Service/Repair 6
 1.8 Actuator Lifting and Handling 6
 1.9 Storage 9
 1.10 Valve and Actuator Variations 9
 1.11 Unpacking 9
2 Installation Instructions 10
 2.1 Valve and Actuator Check 11
 2.2 Connection With Valve and Mounting Kit 11
 2.3 Travel-stop Bolts and Accessories 12
 2.4 Grounding System 12
 2.5 Initial Operation 13
 2.6 Fail Open and Fail Close Configuration 14
3 Field Conversion 15
 3.1 Actuator Disassembled From the Valve 15
 3.2 Actuator Connected to the Valve (and the valve can be stroked) 16
4 Maintenance Instructions 18
 4.1 General Disassembly Instructions 19
 4.2 Spring Container Maintenance 19
 4.3 Hydraulic Cylinder Maintenance 21
 4.4 Scotch Yoke Housing Maintenance 22
 4.5 Spare Parts 23
5 Troubleshooting 24
6 Disposal of Decommissioned Actuators 26
7 Annex 27
Figures

Figure 1: Lifting Lug for Spring Can Lifting Only 7
Figure 2: Correct Lifting of Hydraulic Single Acting Actuator 7
Figure 3: Use of Eyebolt for the Scotch Yoke Housing Cover 7
Figure 4: Vent Valve Correct Position 7
Figure 5: Correct Lifting Position for Actuator Models LHS/LHH-15, -20 and -25 7
Figure 6: Single Acting Actuator Center of Gravity Position 8
Figure 7: Double Acting Actuator Center of Gravity Position and Lifting Arrangement 8
Figure 8: Actuator’s Safe Packed Position on Wooden Pallet 9
Figure 9: Fail CW Plate, According to EN 15714-3 Standard 10
Figure 10: Nameplate Sample 10
Figure 11: Standard Nameplate Position 10
Figure 12: Grounding Kit Detail 12
Figure 13: Grounding Kit Assembled 12
Figure 14: Grounding Kit – Exploded View 13
Figure 15: Single Acting Actuator Configuration: Fail Close – Fail Clockwise 14
Figure 16: Single Acting Actuator Configuration: Fail Open – Fail Counter Clockwise 14
Figure 17: Double Acting Actuator Configuration – Close Position 14
Figure 18: Double Acting Actuator Configuration – Open Position 14
Figure 19: Single Acting LHS in Fail Close Configuration With Valve 14
Figure 20: Double Acting LHS With Valve 14
Figure 21: Single Acting Actuator 19
Figure 22: Spring Can Exploded View 20
Figure 23: Exploded View of Hydraulic Cylinder 21
Figure 24: Exploded View of Housing 22
Figure 25: Exploded View of Assembling Kit 22
Figure 26: LHS Model Selection Table 27
Figure 27: LHH Model Selection Table 27
Figure 28: LHS Weight Selection Table – Single Acting and Double Acting Versions 27
Figure 29: LHH Weight Modules Table 28
Figure 30: LHH Weight Selection Table – Single Acting and Double Acting Versions 28
Figure 31: Mounting Interface Dimensions 29
Figure 32: Actuator Orientation/Installation 30

Tables

Table 1: Spare Parts List for Standard ON/OFF Applications 23
Table 2: Tightening Torques for Screws Without Lubricant 28
Table 3: Mounting Interface Dimensions 29
1 Standard Information

Using Flowserve Valves, Actuators and Accessories Correctly

The following instructions are designed to assist in unpacking, installing and performing maintenance as required on Flowserve products. Product users and maintenance personnel should thoroughly review this bulletin prior to installing, operating or performing any maintenance.

In most cases Flowserve actuators and accessories are designed for specific applications with regard to medium, pressure and temperature. For this reason they should not be used in other applications without first contacting the manufacturer.

1.1 Terms Concerning Safety

The safety terms DANGER, WARNING, CAUTION and NOTE are used in these instructions to highlight particular dangers and/or to provide additional information on aspects that may not be readily apparent.

- **DANGER**: indicates that death, severe personal injury and/or substantial property damage will occur if proper precautions are not taken.

- **WARNING**: indicates that death, severe personal injury and/or substantial property damage can occur if proper precautions are not taken.

- **CAUTION**: indicates that minor personal injury and/or property damage can occur if proper precautions are not taken.

- **NOTE**: indicates and provides additional technical information, which may not be very obvious, even to qualified personnel.

Compliance with other, not particularly emphasized notes, with regard to transport, assembly, operation and maintenance and with regard to technical documentation (e.g., in the operating instruction, product documentation or on the product itself) is essential, in order to avoid faults, which in themselves might directly or indirectly cause severe personal injury or property damage.
1.2 General Usage

To prolong actuator life, use the recommended oils below or their equivalent.

<table>
<thead>
<tr>
<th>Oil Characteristics</th>
<th>40°C cSt</th>
<th>100°C cSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Viscosity</td>
<td>220</td>
<td>19.4</td>
</tr>
<tr>
<td>(ASTM D445)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity Index (ISO 2909)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Density at 15°C [/ °C] (ISO 12185)</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>Cleveland Open Cup °C (ISO 29592)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Pour Point °C (ISO 3016)</td>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>AGMA N. EP5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Periodically check that the oil is in good condition and clean. The cleanliness level for actuator without control system is minimum NAS 1638 Class 8 – ISO 4406 19/17/14. For actuators with control system the oil cleanliness level required by each control system component is normally more stringent. Please verify with Flowserve Service or control system component manufacturer.

LHS/LHH actuator standard ambient and operating temperature range is: -29°C to 100°C (-20°F to 212°F).

Low temperature -60°C (-76°F) and high temperature 160°C (320°F) ranges (polar, cold, arid and tropical temperature requirements in accordance with IEC 60721) are available with different materials of construction. In any case please refer to the temperature range field located in the actuator nameplate.

⚠️ WARNING: Minimum and maximum allowable temperatures indicated on the actuator nameplate must be respected. Additional factors like the valve and pipe temperatures, direct sun exposure and other environmental conditions shall be considered, not to exceed the temperature range.

⚠️ WARNING: The allowable pressure range of the supply fluids as stated in the actuator nameplate must be respected. It is very important to make the standard maintenance at all safety components.

1.3 Protective Clothing

Flowserve products are often used in problematic applications (e.g., extremely high pressures, dangerous, toxic or corrosive media). When performing service, inspection or repair operations, always ensure that the valve and actuator are depressurized and that the valve has been cleaned and is free from harmful substances. In such cases pay particular attention to personal protection (protective clothing, gloves, glasses, etc.).

1.4 Qualified Personnel

Qualified personnel are people who, on account of their training, experience, instruction and their knowledge of relevant standards, specifications, accident prevention regulations and operating conditions, have been authorized by those responsible for the safety of the plant to perform the necessary work and who can recognize and avoid possible dangers.

1.5 Other Requirements for In-plant Installation

- Pipelines must be correctly aligned to ensure that the valve is not fitted under tension.
- If not expressly agreed, fire protection is not supplied along with the actuator and it must be provided by the user.
1.6 Spare Parts

Use only Flowserve original spare parts. Flowserve cannot accept responsibility for any damages that occur from using spare parts or fastening materials from other manufacturers. If Flowserve products (especially sealing materials) have been in storage for long periods, check these for corrosion or deterioration before using these products. A table with the list of the main spare parts for standard ON/OFF applications with the interval times can be found in Paragraph 4.5 at Table 1.

1.7 Service/Repair

To avoid possible injury to personnel or damage to products, safety terms must be strictly adhered to. Modifying this product, substituting non-factory parts, or using maintenance procedures other than as outlined in this instruction could drastically affect performance and be hazardous to personnel and equipment, and may void existing warranties.

Between actuator and valve there are moving parts. To avoid injury, Flowserve provides pinch-point-protection in the form of cover plates, especially where side-mounted positioners are fitted. These protections are according to Machine Directive 2006/42/EC recommendations. If these plates are removed for inspection, service or repair, special attention is required. After completing work the cover plates must be refitted.

In addition to the operating instructions and the obligatory accident prevention directives valid in the country of use, all recognized regulations for safety and good engineering practices must be followed.

⚠️ WARNING: Before products are returned to Flowserve for repair or service, Flowserve must be provided with a certificate which confirms that the product has been decontaminated and is clean. Flowserve will not accept deliveries if a certificate has not been provided (a form can be obtained from Flowserve).

1.8 Actuator Lifting and Handling

Only Allen wrenches and hexagonal wrenches of the few sizes are required for the overall operations. The lifting equipment consists of commercial chains and slings of adequate dimensions.

In order to prevent damage to actuator accessories, before starting the lifting operations, ensure that the lifting tools, like chain and clevis hook, are in the correct position and do not interfere with the control panel and related tubing.

⚠️ CAUTION: Lifting and handling of the actuator should be done by qualified staff and in compliance with the laws and regulations in force.

⚠️ WARNING: The lifting lugs or eyebolts are appropriate for actuator lifting only. They are not designed to support the combined weight of the valve and actuator assembly together. During the lifting operations do not stand under the actuator. The actuator should be handled with appropriate lifting means. The weight of the actuator is reported on the packing slip and on the overall-dimensions drawing furnished with the documents accompanying the actuator.

For actuator weight, please, refer to Figures 28 and 29 in the Annex section. For the general actuator dimensions, please refer to LHS/LHH technical bulletin LFENTB0003, available on www.flowserve.com.
WARNING: Only for LHS/LHH models 30 and larger

DANGER: For lifting and handling, use the eyebolts on the housing. The eyebolt on the spring can (for single acting version) is only for the mounting/dismounting steps or eventually for balancing the actuator.

WARNING: Only for LHS/LHH models -15, -20, -25 and -25 models.
WARNING: Only for actuator balancing or spring container mounting/dismounting operation.

WARNING: After transportation, inspect the components to look for any possible damage.

WARNING: For lifting and handling use the appropriate lifting arrangement, as shown in Figures 2, 3 and 5. Do not lift the actuator with the valve assembled.
1.9 Storage

Flowserve actuators are typically provided with an epoxy resin coating or with other painting systems as agreed with the customer. This means that Flowserve products are well protected from corrosion. Nevertheless, in order to maintain good working conditions and a good finish, until the actuator is installed in the plant, it is necessary to follow a few rules during the storage period:

- Flowserve actuators must be stored adequately in a clean, dry environment.
- Ensure that plastic caps are fitted to protect the hydraulic connections and the cable entries, to prevent the ingress of foreign materials. These caps should not be removed until the product is actually mounted into the system.
- If the storage is outdoors, or if long-term storage is necessary, the plastic protection plugs must be replaced with weatherproof metal plugs.
- The actuator must be placed on a wooden pallet, in order to not damage the coupling base and avoid the other surfaces resting on the ground.

In case of long-term storage, additionally perform the following measures:

- Coat the coupling parts (spool piece base, flanges, bushings, joints) with protective oil or grease.
- If possible, blank off the spool piece base flange with a protection disk.
- Provide a tarpaulin cover or some other means of protection, especially if the storage is outdoors.

1.10 Valve and Actuator Variations

These instructions cannot claim to cover all details of all possible product variations, nor can they provide information for every possible example of installation, operation or maintenance. This means that the instructions normally include only the directions to be followed by qualified personnel where the product is being used for its defined purpose. If there are any uncertainties in this respect, particularly in the event of missing product-related information, clarification must be obtained via the appropriate Flowserve sales office.

1.11 Unpacking

- Each delivery includes a packing slip. When unpacking, check all delivered actuators and accessories using this packing slip.
- Report transportation damage to the carrier immediately.
- In case of discrepancies, contact your nearest Flowserve location.
- If necessary, retouch minor damage to the paint coating which may have occurred during transport or storage.

⚠️ **WARNING:** When the actuator has ATEX requirements, ensure that “LHS/LHH Series Safety Extract and Instruction Manual” (Explosive Atmosphere Equipment and ATEX Certification) accompany this manual and is referred to for equipment usage.

⚠️ **WARNING:** When the actuator has SIL requirements, ensure that the “LHS/LHH Series Safety Manual” (Functional Safety and SIL Certification) accompany this manual and is referred to for equipment usage.
Installation Instructions

The LHS/LHH Series is a fully modular design, Scotch yoke actuator, with mounting base dimensions in compliance with ISO 5211 (refer to Table 3: Mounting Interface Dimensions in Annex Section for details of exacts coupling). It may also be customized, if required.

The LHS/LHH hydraulic Scotch yoke spring return actuators adopt a push-to-compress spring design.

⚠️ WARNING: Actuator operation/pressure limitations must be in accordance with data reported on actuator nameplate.

The Flowserve nameplate is normally situated on the cover of the Scotch yoke housing; if it’s not possible, it could be situated in the front zone or in the rear zone of the Scotch yoke housing.

NOTE: The sense of rotation is defined by a dedicated plate, shown in Figure 10, in accordance with the EN 15714-3.
2.1 Valve and Actuator Check

⚠️ DANGER: Before installation check the order-no., serial-no. and/or the tag-no. to ensure that the valve/actuator is correct for the intended application.

Before mounting the actuator to the valve, manually open and close valve (if possible), to ensure it is not stuck. Be sure valve and actuator rotate in the same direction and are in the same position (i.e., valve closed, actuator closed). The assembly position of the actuator, with reference to the valve, has to be in accordance with the plant requirements.

2.2 Connection With Valve and Mounting Kit

The LHS/LHH actuator may be supplied with the spool piece already assembled. To assemble the actuator onto the valve, perform the following steps:

2.2.1 Check the mounting surfaces, the stem adaptor and the spool piece to assure proper fit. Clean the flanges of the valve and spool piece to remove oils and greases since the torque is transmitted by friction. Also, remove any rust that may have occurred during storage.

2.2.2 Secure the valve in the closed/open fail safe position, if possible with the stem vertical. Lubricate the valve stem in order to ease the assembly. Place the stem adaptor on the valve stem.

2.2.3 Lift the actuator by the special lift points (eyebolts), using a proper lifting system. Position the actuator over the valve and lower to engage the stem adaptor to the actuator bore. Continue to lower until the spool piece sits on valve mounting surface. This coupling has to take place without force and only with the weight of the actuator. The mounting bolts (or studs) of the valve should easily fit into the bolt holes of the spool piece without any binding. If needed, turn or stroke the actuator a few degrees and/or adjust the actuator travel-stops.

2.2.4 The mounting nuts (or bolts) connecting the base of the spool piece to the valve flange must be evenly tightened according to tightening torque table without lubricant (Table 2 in Annex section).
Alternatively, the coupling between valve and actuator can be direct, without the need of a spool piece. In these cases, Flowserve can provide an intermediate adaptor flange (fitted under the actuator base) and a special bushing to be inserted into the yoke bore.

WARNING: In case of spool piece (or adaptor flange) installation by the client, it is mandatory to refer to Table 3, “Mounting Interface Dimensions” in Annex section, or to follow more specific instructions included in the job documentation supplied along with the actuator. These assembling instructions include details of prescribed stud bolts and their maximum allowable threaded length, in addition to the Loctite type to be used for perfect sealing of the Scotch yoke housing.

CAUTION: The actuator lifting and handling should be carried out by qualified staff and in compliance with the laws and provisions in force.

WARNING: The lifting lugs or eyebolts are appropriate for actuator lifting only. They are not designed to support the combined weight of the valve and actuator assembly together. During the lifting operations do not stand under the actuator. The actuator should be handled with appropriate lifting means. The weight of the actuator is reported on the packing slip and on the overall-dimensions drawing furnished with the documents accompanying the actuator.

2.3 Travel-stop Bolts and Accessories

All actuated valves require accurate travel-stop adjustments at both ends of the stroke to obtain optimum performance and valve seat life. Adjust the travel-stop bolts of the actuator for the proper open and close valve positions, per valve manufacturer’s recommendations.

The LHS/LHH actuators have travel-stop adjustments in both the clockwise and counter-clockwise directions. The +/- 5-degree adjustment feature provides shaft rotation from 80 to 100 degrees overall.

The adjustment of the travel-stops is performed in accordance with the following steps. Refer to Figures 21 and 22.

Hydraulic cylinder stop (25): Loosen the seal nut (if present) with a proper wrench. Screw or un-screw the stop (25), using a proper Allen key, while keeping the seal nut stationary. Tighten the seal nut.

Spring container stop (7): Remove the spring container end flange (11) after unscrewing the hex screws (10). Screw or unscrew the end stop (7) to the desired position, using a proper Allen key. Replace the end flange and tighten the hex screws.

Hydraulically stroke the actuator several times to assure proper operation. The stem adaptor should not bind during operation. If the actuator is equipped with a switch, positioner or other accessories, adjust them at this time.

2.4 Grounding System

For the actuator earthing, use the grounding kit, shown in Figures 12, 13 and 14:

![Figure 12: Grounding Kit Detail](image12)

![Figure 13: Grounding Kit Assembled](image13)
2.5 Initial Operation

Before initial operation of the actuator, perform the following checks:

- Check that all electrical supply, control and signal lines are properly connected, by following the dedicated customer procedures.
- Check that the pressure and quality of the supply fluids are as prescribed.
- Check the absence of leaks in the hydraulic connections. If necessary, tighten the pipe fittings.
- Check that the environmental conditions are compatible with the design conditions. For information, contact Flowserve.
2.6 Fail Open and Fail Close Configuration

The actuator is designed for work in both configurations: fail open and fail close. For conversion from one configuration to the other, refer to next paragraph.

Figure 15: Single Acting Actuator Configuration: Fail Close – Fail Clockwise

Figure 16: Single Acting Actuator Configuration: Fail Open – Fail Counter Clockwise

Figure 17: Double Acting Actuator Configuration – Close Position

Figure 18: Double Acting Actuator Configuration – Open Position

Figure 19: Single Acting LHS in Fail Close Configuration With Valve

Figure 20: Double Acting LHS With Valve
3 Field Conversion

Field Conversion From Fail CW to Fail CCW or Vice Versa (for Spring Return Actuators)

NOTE:
- The actuator designation needs to be suitably changed on the nameplate.
- An additional adapter is required for field conversion from Fail CW to CCW and vice versa.

There are two different situations, requiring different sequences of instructions: in the first situation, the actuator is already disassembled from the valve. The second situation regards the conversion with the actuator assembled on the valve. The reference drawings are Figures 22, 23, 24 and 25.

3.1 Actuator Disassembled From the Valve

⚠️ WARNING: Ensure that the hydraulic connection ports of the cylinder are disconnected. Also make sure that all hydraulic supplies to the control unit and all power supplies are disconnected. Finally, make sure that the actuator is in fail safe position, i.e., that it is not locked in a position with the spring compressed by means of locking devices.

3.1.1 Unscrew and remove the end stop (25) from the hydraulic cylinder. For removing the stop, refer to paragraph 2.3. If necessary, feed the hydraulic cylinder from the port on the head flange (19) at minimum necessary pressure to facilitate the movement of the Scotch yoke and assure the total retraction of the piston rod (20). Remove the pressure. In this way the spring is fully extended.

3.1.2 Remove the cover (46) from the housing by unscrewing all of the locking components: hex screws (45), hex head shoulder bolts (44) and eyebolts (42) plus upper nuts (43). Leave the studs (41) screwed into the housing (51).
3.1.3 Remove the spring can, carefully following the instructions given in paragraph 4.2. Manually rotate the Scotch yoke (36) counterclockwise (or clockwise, depending on the original fail configuration) up to a position of approximately 45°. Locate the studs (57) that connect the housing to the hydraulic cylinder. With the Scotch yoke rotated of 45°, it is possible to easily access these studs. Carefully unscrew the nuts (56) and the studs (57). Pull out the whole hydraulic cylinder (the stem is fully retracted).

NOTE: Take care during removal, so as not to damage the piston rod or the stud threads.

3.1.4 Change the adapters. Replace the adapters (54 and 55) designed for fail close (open) action, with the new ones designed for the opposite action.

NOTE: Take care to choose the adapter kit suitable for the Scotch yoke type in use (symmetric or canted). Refer to point 3.2.7.

Reassemble the hydraulic cylinder with adapter, using the reverse procedure as described in paragraph 4.3.

NOTE: You can identify the cylinder adapter to the spring can adapter through the three grub screws (53).

3.1.5 Manually rotate the Scotch yoke (36) until the guide block (48) is in contact with the piston rod adapter (54), in correspondence of the relevant slot.

Reassemble the spring can, as instructed in paragraph 4.2.

Reposition the cover, taking care to replace the cover gasket (47).

Readjust the stops, as instructed in paragraph 2.3. Repeatedly operate the actuator to check the functioning in the new fail configuration.

3.2 Actuator Connected to the Valve (and the valve can be stroked)

NOTE: If the valve cannot be rotated, due to the requirements of the plant, the actuator must be removed from the valve following the instructions given in paragraph 2.2. In this case, use the procedure described in paragraph 3.1. The actuator should be reinstalled in the same position of the valve.

⚠️ **WARNING:** Make sure that all hydraulic supplies to the control unit and all power supplies are disconnected and if necessary, remove the control panel and accessories from the actuator. Finally, make sure that the actuator is in fail position, i.e., that it is not locked in a position with the spring compressed by means of locking devices.

3.2.1 Connect the hydraulic supply directly to the cylinder hydraulic port on the end flange and apply the minimum necessary pressure to move the actuator to approximately 45°. If the actuator is provided with a manual override, you can use it to perform this operation.

3.2.2 Measure the position of the spring can end stop (7), remove it, and then lock the spring in the compressed position by means of a special tool (provided by Flowserve upon request) for this maintenance. The tool is to be installed in the opening of the spring can end flange (11) where the spring-end travel-stop has been removed. Screw the special tool to the spring shaft and follow other detailed instructions provided with the special tool. Remove pressure from the hydraulic cylinder.
WARNING: At this point the spring is compressed and the spring module contains a large quantity of stored energy. Failure to properly engage the retaining device or failure to handle the spring carefully could result in release of the spring with potential damage to equipment or injury to personnel.

3.2.3 Unscrew and remove the travel-stop of the hydraulic cylinder (25). For removing the stop, refer to paragraph 2.3. Feed the hydraulic cylinder from the port on the head flange (19) at minimum necessary pressure up to totally retract the piston rod (20).

3.2.4 Remove the cover (46) from the Scotch yoke housing by unscrewing all of the locking components: hex screw (45), hex head shoulder bolts (44) and eyebolts (42) plus upper nuts (43). Leave the studs (41) screwed into the Scotch yoke housing (51).

3.2.5 Remove the spring can, carefully following the instructions given in paragraph 4.2.

3.2.6 Locate the studs (57) that connect the Scotch yoke housing to the cylinder. With the Scotch yoke (36) rotated 45°, it is possible to easily access these studs. Carefully unscrew the nuts (56). Pull out the whole hydraulic cylinder. The stem has to be fully retracted.

NOTE: Take care during removal, so as not to damage the piston rod or the stud threads.

3.2.7 Change the adapters. Replace the adapters (54 and 55) designed for fail close (open) action, with the new ones designed for the opposite action. Take care to choose the adapter kit suitable for the Scotch yoke type in use (symmetric or canted). The guide block (48) of the symmetric Scotch yoke is marked with the “S” letter on the top face, while the guide block of the canted Scotch yoke is marked with a “C” letter on the top face, as shown in the pictures at right.

NOTE: The spring can adaptor (55) and cylinder adaptor (54) can be inserted in the guide block in one way only, pending on the Fail Close (CW) or Fail Open (CCW) configuration. Component numbers are referred to in Figures 23 and 24.

3.2.8 Reassemble the spring can, as instructed in paragraph 4.2.

3.2.9 Reassemble the hydraulic cylinder with adapter, following the reverse procedure as described in point 4.3.

3.2.10 Apply the minimum pressure necessary to the hydraulic cylinder from the port on the end flange (27) until the piston rod moves the guide block (48) and partially compresses the spring. In this condition it will be possible to remove the special tool from the spring can.

3.2.11 Remove the pressure, checking that the actuator goes in the correct new fail safe position.

3.2.12 Reposition the cover, taking care to replace the cover gasket (47).

3.2.13 Readjust the travel-stops, as instructed in paragraph 2.3.
Maintenance Instructions

LHS/LHH Series actuators are designed to offer the greatest ease of operation during assembly, disassembly and maintenance. The maintenance and disassembly do not require special equipment or special or large wrenches. Furthermore, the joints among the moving parts of the actuator are made exclusively through pins and not using bolts that require tightening with specific torques.

LHS/LHH actuators do not need maintenance for long periods, even if they are working in severe conditions. The life-time of these actuators is guaranteed for a minimum of 25 years, with a regular and programmed maintenance operation every six years.

However, if the actuator operation happens infrequently, it is recommended to periodically check the actuator, performing the following steps:

• In the plants where it is possible, carry out a few opening and closing operations, involving all the control unit components, checking that the actuator operates correctly and within the required stroking times.
• Check that all the signals (hydraulic and electric) arriving at the actuator are correct and that the supply fluid pressure is within the required range. Check for the absence of leaks in the hydraulic connections. If necessary, tighten the pipe fittings.
• Check the paint coating. If some areas are damaged due to accidental events, retouch them according to the paint specifications.

In case of scheduled preventive maintenance, or following accidental events, refer to the following maintenance instructions regarding the main actuator components (hydraulic cylinder and housing).

The actuator is furnished with lubricant sufficient for all its life cycle. In case of scheduled or extraordinary maintenance, it is possible to lubricate the parts of the housing with the following greases:

<table>
<thead>
<tr>
<th>For standard temperature conditions (-29 to +100°C)</th>
<th>For low temperature conditions (lower limit -60°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease Characteristics</td>
<td>Grease Characteristics</td>
</tr>
<tr>
<td>Worked Penetration [dmm]</td>
<td>280</td>
</tr>
<tr>
<td>Dropping Point ASTM [°C]</td>
<td>190</td>
</tr>
<tr>
<td>Base Oil Viscosity at 40°C [mm²/s]</td>
<td>100</td>
</tr>
</tbody>
</table>

* Grease suggested: AGIP MUP2 or equivalent

For different conditions, contact Flowserve.
4.1 General Disassembly Instructions

The LHS/LHH Series actuator is available in two different configurations, single acting and double acting, composed by the main parts shown in Figure 21: Single Acting Actuator.

4.1.1 Disconnect all hydraulic and electrical supplies from actuator;

4.1.2 If removal of the actuator from the valve is necessary, before dismounting the actuator remove all accessories from actuator;

4.1.3 The reference drawings for the instructions reported in the following paragraphs are the exploded views of single acting and double acting actuators, included as Figures 21, 22, 23 and 24.

4.2 Spring Container Maintenance

The spring container does not require maintenance. The lubricating of internal parts is carried out during the assembly and is not necessary during the normal life of the actuator. The substitution of the spring container is not expected over the entire actuator life. However, accidental events may result in damage to this component. In these cases, proceed as described in the following steps.

The spring container is a single welded module. In case of damage, the whole container must be disassembled from the actuator and replaced with a new one equal to the original.

The removal of the spring container from the actuator has to be performed through the following steps. The reference drawing is Figure 22.
WARNING: Ensure that the hydraulic connection ports of the cylinder are disconnected. Also make sure that all hydraulic supplies to the control unit and all power supplies are disconnected. Finally, make sure that the actuator is in the fail safe position.

4.2.1 Unscrew and remove the travel-stop of the hydraulic cylinder (25). For removing the stop, refer to paragraph 2.3. If necessary, feed the hydraulic cylinder from the port on the head flange (27) at minimum necessary pressure to facilitate the movement of the Scotch yoke and assure the total retraction of the piston rod (20). Remove the pressure. This way the spring is fully extended.

4.2.2 Remove the cover (46) from the housing by unscrewing all of the locking components: hex screw (45), hex head shoulder bolts (44) and eyebolts (42) plus upper nuts (43). Leave the studs (41) screwed into the Scotch yoke housing (51).

4.2.3 Hook and hold in tension the spring container using the specific lifting lug located on the top of the spring can (shown in the picture). Care should be taken to choose a lifting system suitable for the weight of the spring container. Locate the studs (57) that connect the Scotch yoke housing with the spring container. Carefully un-screw the nuts (56) and the studs (57). Pull out the whole spring container.

NOTE: Take care to horizontally support the spring module during removal, so as not to damage the spring rod or the stud threads.

4.2.4 Before reassembling the new spring module to body, make sure stud threads are free of any dirt, shavings, or other debris. Clean threads with rag and solvent if required, and lubricate threads with an anti-seize compound. Assemble the new spring can, following the reverse procedure as described in points 4.2.3 to 4.2.5. Readjust the travel stop (25) of the hydraulic cylinder, as instructed in paragraph 2.3.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Split Ring</td>
<td>7</td>
<td>Spring Stop Bolt</td>
<td>13</td>
<td>Spring</td>
</tr>
<tr>
<td>2</td>
<td>Bushing</td>
<td>8</td>
<td>O-Ring</td>
<td>14</td>
<td>Spring Can</td>
</tr>
<tr>
<td>3</td>
<td>Spring Rod</td>
<td>9</td>
<td>Stop Bolt Cap</td>
<td>15</td>
<td>Bar Pin</td>
</tr>
<tr>
<td>4</td>
<td>Bushing</td>
<td>10</td>
<td>Hex Screw</td>
<td>16</td>
<td>Spring Plate</td>
</tr>
<tr>
<td>5</td>
<td>Spring Rod End Nut</td>
<td>11</td>
<td>Spring Can End Flange</td>
<td>17</td>
<td>Bar Pin</td>
</tr>
<tr>
<td>6</td>
<td>Spring Guide</td>
<td>12</td>
<td>Bar Pin</td>
<td>18</td>
<td>Spring Can Head Flange</td>
</tr>
</tbody>
</table>
4.3 Hydraulic Cylinder Maintenance

The standard hydraulic cylinder maintenance mainly consists in the replacement of all parts that may degrade over time, even in the absence of faults. These components are the O-rings and the sliding elements of the piston.

The substitution of cylinder components (or of the whole cylinder) is not expected over the entire actuator life. However, accidental events may result in damage to these components. In these cases, proceed as described in the following steps.

There are two possible types of maintenance: standard maintenance which can be performed in the field without the need to remove the hydraulic cylinder from the actuator, and a more thorough one, following unexpected events, which often can be performed only after removing the cylinder from the actuator.

⚠️ DANGER: Do not attempt this maintenance operation with cylinder under pressure.

Standard In-field maintenance

The reference drawing is Figure 23.

![Exploded View of Hydraulic Cylinder](image)

Figure 23: Exploded View of Hydraulic Cylinder

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Spare Parts*</th>
<th>Number</th>
<th>Description</th>
<th>Spare Parts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Cylinder Head Flange</td>
<td></td>
<td>27</td>
<td>Cylinder End Flange</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Piston Rod</td>
<td></td>
<td>28</td>
<td>O-Ring (x2)</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>O-Ring</td>
<td>X</td>
<td>29</td>
<td>Back-up Ring (x2)</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>Piston</td>
<td></td>
<td>30</td>
<td>Tube</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Guide Ring</td>
<td>X</td>
<td>31</td>
<td>Tie Rod</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Split Ring</td>
<td></td>
<td>32</td>
<td>Spiral Retaining Shaft Ring</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Stop Bolt Assembly</td>
<td></td>
<td>33</td>
<td>O-Ring</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>Hex Nut (High)</td>
<td></td>
<td>34</td>
<td>Split Ring</td>
<td></td>
</tr>
</tbody>
</table>

* Standard maintenance spare parts for on/off applications

⚠️ WARNING: Before performing any maintenance operation on the cylinder it's mandatory to remove the pressure inside the cylinder. Ensure that the hydraulic connection ports of the cylinder are disconnected. Also make sure that all hydraulic supplies to the control unit and all power supplies are disconnected. Make sure that the actuator is in the fail position, i.e., that it is not locked in a position with the spring compressed by means of a special tool.

⚠️ WARNING: Use the hydraulic cylinder only for the intended function it has been designed for.

NOTE: During the maintenance operation inside the cylinder, it's suggested to have a visual check of the internal parts of the cylinder in order to guarantee their integrity.
Perform the following steps:

4.3.1 If necessary, feed the hydraulic cylinder from the port on the head flange (19) at minimum necessary pressure to facilitate the movement of the Scotch yoke and assure the total retraction of the piston rod (20). In this way the spring is fully extended. Unscrew and remove the travel stop of the hydraulic cylinder. For removing the stop, refer to the indications given in paragraph 2.3.

4.3.2 Remove at least two of the tie rods (31) positioned on the upper part of the cylinder by unscrewing the nuts on the sides of the end flange and of the head flange (or unscrewing the tie rods from the head flange if threaded into the flange.) This operation provides two free holes to be used for lifting the end flange (27). Screw two male eyebolts in these two holes and connect the end flange to a lifting system. Care should be taken to choose a lifting system suitable for the weight of the cylinder. Refer to the weight table shown in Figures 27 and 28. Remove all other tie rods (31), following the same procedure described in point 4.3.2. Then carefully remove the end flange (27) from the tube (30).

4.3.3 Finally, remove the tube (30). Take care not to scratch or dent the honed and plated inner surface of the tube. Remove the O-rings (28) from the flange; remove the O-ring of the piston (33) and finally the guide tapes (23) from the piston. Clean all surfaces of piston and flanges in contact with these components with rag and solvent. Brush the O-ring grooves with a light oil film and install the new O-rings. Spread a thin layer of grease on the bottom of the guide tape grooves and install the new guide tapes (23). Clean the internal surface of the tube (30) and lubricate with a protective oil film.

4.3.4 Reassemble the parts of the cylinder with the reverse procedure as described from points 4.3.2 to 4.3.5. The tie rods should be tightened using a torque wrench, alternating between opposite holes, applying a torque according to Table 2 included in the Annex section. Readjust the stops as instructed in paragraph 2.3.

4.4 Scotch Yoke Housing Maintenance

Standard maintenance of the Scotch yoke housing may take place in the field, without the need to disassemble the spring container or the hydraulic cylinder. Perform the following steps. The reference drawings are Figures 23 and 24.
4.4.1 Remove the position indicators or other accessories, if fitted. Remove the cover (46) from the Scotch yoke housing by unscrewing all the locking components: hex screw (45), hex head shoulder bolts (44) and eyebolts (42) plus upper nuts (43). Leave the studs (41) screwed into the Scotch yoke housing (51). Remove the worn internal O-ring (39) of the bushing (35) inserted in the cover (46). Clean the O-ring groove and the sliding area of the bushing and after having brushed these surfaces with a light oil film, install the new internal O-ring (39).

4.4.2 Apply a generous layer of grease on the sliding surfaces of the accessible moving parts inside the housing. In particular, grease the guide bar (50) and the surfaces of the slots of the wings of the Scotch yoke (36), in which the slider blocks (37) run. Reposition the cover, taking care to replace the cover gasket (47).

The design of LHS/LHH actuators features ease of on-site maintenance and an increased actuator life cycle. For this reason, appropriate procedures and equipment have been prepared, in order to allow the replacement of all parts of the Scotch yoke without the need to disassemble the actuator from the valve. For these operations, contact Flowserve.

NOTE: The spring can and hydraulic cylinder must be removed before disassembling the Scotch yoke housing.

4.5 Spare Parts

The main spare parts and the interval time for standard ON/OFF applications are listed in the table below. Part numbers are referred to in Figures 22, 23 and 24.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Maintenance Interval Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>O-Ring</td>
<td>6 years</td>
</tr>
<tr>
<td>23</td>
<td>Tape Guide</td>
<td>1800 cycles</td>
</tr>
<tr>
<td>28</td>
<td>O-Ring</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Back-up Ring</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>O-Ring</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>O-Ring</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>O-Ring</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Cover Gasket</td>
<td></td>
</tr>
</tbody>
</table>

Standard maintenance spare parts for on/off applications

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Centering Ring</td>
</tr>
<tr>
<td>53</td>
<td>Grub Screw</td>
</tr>
<tr>
<td>54</td>
<td>Cylinder Adaptor</td>
</tr>
<tr>
<td>55</td>
<td>Spring Can Adaptor</td>
</tr>
<tr>
<td>56</td>
<td>Hex Nut (High)</td>
</tr>
<tr>
<td>57</td>
<td>Stud</td>
</tr>
<tr>
<td>58</td>
<td>Guide Adapter Pin†</td>
</tr>
<tr>
<td>59</td>
<td>Hex Head Screw†</td>
</tr>
</tbody>
</table>

† Only in double acting actuator

WARNING: It is recommended to follow the regular maintenance interval times indicated in Table 1.
Troubleshooting

To prevent the actuator from not properly functioning or low performance, first ensure that the installation and the adjustment operations are carried out completely in accordance with this manual.

⚠️ WARNING: When attempting to identify faults, it is very important to observe all the regulations and instructions about safety. Read all the paragraphs of this manual concerning maintenance before opening for inspection or starting to repair any actuator components. If in doubt, choose SAFETY FIRST.

The following table lists potential problems along with corresponding causes and possible solutions. If a malfunction cannot be identified and eliminated using the table, please contact a Flowserv representative.

<table>
<thead>
<tr>
<th>Troubleshooting Table</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The actuator does not move.</td>
<td>Actuator has not been properly installed.</td>
<td>Check that all the hydraulic connections and that all the hydraulic components have been installed correctly, and are in accordance with the actuator operating mode.</td>
</tr>
<tr>
<td></td>
<td>Supply pressure problems.</td>
<td>Check that the actuator is properly connected to the valve and that there aren't problems in the mounting kit.</td>
</tr>
<tr>
<td></td>
<td>Problems in the control panel (if present).</td>
<td>Check that sufficient supply pressure is available at actuator inlet port. If possible, place a gage in line and monitor the pressure level, in order to discover unexpected pressure drops.</td>
</tr>
<tr>
<td></td>
<td>The valve is blocked.</td>
<td>Check that the actuator is properly lubricated, and that there is no solidified grease among sliding parts or rotating parts. If actuator lubrication is inadequate or improper, apply a uniform lubricant layer. Follow the instructions for center body and cylinder maintenance (par. 4.3). Consult Flowserv for proper oil and grease to be used.</td>
</tr>
</tbody>
</table>
Troubleshooting Table

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The actuator does not move.</td>
<td>A moving part is seized up.</td>
<td>Check if any moving part is blocked. If so, follow the maintenance instructions given in paragraphs 4.2, 4.3 and 4.4.</td>
</tr>
<tr>
<td>The actuator does not move.</td>
<td>Leakages of the hydraulic cylinder.</td>
<td>A significant oil leak may prevent the actuator from operating. Ensure that there aren’t any leaks in the hydraulic cylinder toward the outside. Check also that there are not leaks across the piston. If leaks are present, follow the cylinder maintenance instructions given in paragraph 4.3.</td>
</tr>
<tr>
<td>The actuator does not move.</td>
<td>The actuator model is not the correct one, or is not suitable for the plant conditions.</td>
<td>Check the actuator nameplate and the plant requirements. If there are mismatches, contact Flowserve Service Department.</td>
</tr>
<tr>
<td>The actuator does not move.</td>
<td>Spring problems (if actuator is a single acting model).</td>
<td>Check the proper functioning of the spring can. If problems are found, contact the Flowserve Service Department.</td>
</tr>
<tr>
<td>The actuator does not move.</td>
<td>A lockout device has been inserted and forgotten in that position.</td>
<td>Disconnect the lockout module.</td>
</tr>
<tr>
<td>The valve does not shut off properly and there are leaks.</td>
<td>The actuator is not correctly adjusted.</td>
<td>Adjust the end stops of the hydraulic cylinder and of the spring can until the valve is leak-tight across the seat. Follow the instructions given in the paragraph about Travel-stop bolts (2.3).</td>
</tr>
<tr>
<td>The valve does not shut off properly and there are leaks.</td>
<td>The actuator is not correctly adjusted.</td>
<td>As above, check the position of the end stop in opening and closing direction. If necessary, adjust them. Follow the instructions given in paragraph 2.3.</td>
</tr>
<tr>
<td>The valve does not shut off properly and there are leaks.</td>
<td>Actuator torque lower than required.</td>
<td>In order to do a check it is necessary to perform the following test: disassemble the actuator from the valve and measure the minimum pressure values necessary to move and compress the spring (if the actuator is a single acting model) or the minimum values necessary to move the actuator yoke and perform a stroke (for double acting models). Compare the measured values with the ones reported on the Testing Certificate. If there are significant differences you should contact Flowservice Service Department.</td>
</tr>
<tr>
<td>During the stroke the actuator exhibits excessive amounts of backlash.</td>
<td>Some components are excessively worn.</td>
<td>Identify and replace these components, according to the procedure described in paragraphs 4.2, 4.3 and 4.4.</td>
</tr>
</tbody>
</table>

In case of other problems not listed in this table, you should contact the Flowserve Service Department.
Disposal of Decommissioned Actuators

⚠️ WARNING: Before disassembling the actuator from the valve and before any decommissioning activity ensure that the pneumatic connection ports of the cylinder are disconnected and open to the ambient. Also make sure that power and pneumatic supplies are turned off, and bleed any pressurized parts of the actuator, control panel and pneumatic tubing (including air tanks, if present). Verify that the actuator is in fail safe position, i.e., that it is not locked in a position with the spring compressed by means of locking devices.

Spring return actuators that are to be decommissioned permanently must have the stored energy in the spring neutralized. For LPC and LPS actuators, the spring module can be safely disassembled from the actuator if the supply pressure has been removed and the actuator is in its fail safe position: in fact, in this condition, any residual spring preload is not transmitted to the actuator. To disassemble the spring module from the actuator, follow the instructions provided at Paragraph 4.1 of this manual.

Once the spring module is disassembled from the actuator, the spring inside the spring module can be neutralized in different ways depending on the equipment available on-site. Please contact your Flowserve Limitorque representative to receive a dedicated procedure for spring module disassembly, in order to safely perform this operation in the most appropriate way according to available equipment and tools.

⚠️ WARNING: Failure to neutralize the spring contained in the actuator’s spring module or to follow these instructions could lead to injury to personnel or property damage.

No other specific actions need be taken on other portions/parts of the actuator for decommissioning. To disassemble the pneumatic cylinder and Scotch-yoke housing, follow the instructions provided respectively at Paragraphs 4.2 and 4.3 of this manual.

All disassembled parts of the actuator shall be separated according to their material type (metal, rubber, plastic, oil and grease, electric and electronic equipment ...). Dispose them with support of differentiated waste collection sites, as provided for by the laws and provisions in force.
Annex

Figure 26: LHS Model Selection Table

<table>
<thead>
<tr>
<th>HOUSING SIZE</th>
<th>YOKE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>A</td>
<td>20</td>
<td>B</td>
<td>25</td>
<td>C</td>
<td>30</td>
<td>A</td>
<td>35</td>
<td>B</td>
<td>40</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td>30</td>
<td>C</td>
<td>45</td>
<td>A</td>
<td>50</td>
<td>B</td>
<td>60</td>
<td>C</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>55</td>
<td>B</td>
<td>60</td>
<td>C</td>
<td>75</td>
<td>A</td>
<td>80</td>
<td>B</td>
<td>100</td>
<td>C</td>
</tr>
<tr>
<td>55</td>
<td>A</td>
<td>60</td>
<td>B</td>
<td>75</td>
<td>C</td>
<td>80</td>
<td>A</td>
<td>90</td>
<td>B</td>
<td>100</td>
<td>C</td>
</tr>
<tr>
<td>60</td>
<td>B</td>
<td>75</td>
<td>C</td>
<td>90</td>
<td>A</td>
<td>100</td>
<td>B</td>
<td>100</td>
<td>C</td>
<td>110</td>
<td>A</td>
</tr>
</tbody>
</table>

Figure 27: LHH Model Selection Table

<table>
<thead>
<tr>
<th>HOUSING SIZE</th>
<th>HYDRAULIC CYLINDER SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>15</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
<td>50</td>
<td>15</td>
<td>55</td>
<td>15</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>50</td>
<td>15</td>
<td>60</td>
<td>15</td>
<td>65</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 28: LHS Weight Selection Table – Single Acting and Double Acting Versions

<table>
<thead>
<tr>
<th>HOUSING SIZE</th>
<th>HYDRAULIC CYLINDER SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>40</td>
<td>15</td>
<td>50</td>
<td>15</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>50</td>
<td>15</td>
<td>60</td>
<td>15</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>
Figure 29: LHH Weight Modules Table

Figure 30: LHH Weight Selection Table – Single Acting and Double Acting Versions

Table 2: Tightening Torques for Screws Without Lubricant
(Tie Rods Excluded) – Applicable Also to Mounting Kit

Table 3: Tightening Torque Table for Standard Cylinder. Tie Rods Without Lubricant.
Figure 31: Mounting Interface Dimensions

Table 3: Mounting Interface Dimensions

<table>
<thead>
<tr>
<th>Actuator Size</th>
<th>ISO 5211 Flange Interface (Reference)</th>
<th>N. of Holes</th>
<th>P.C.D. (mm Inch)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHS/LHH-15</td>
<td>F16</td>
<td>4</td>
<td>165 (6.50)</td>
<td></td>
</tr>
<tr>
<td>LHS/LHH-20</td>
<td>F25</td>
<td>8</td>
<td>254 (10.00)</td>
<td></td>
</tr>
<tr>
<td>LHS/LHH-25</td>
<td>F30</td>
<td>8</td>
<td>298 (11.73)</td>
<td></td>
</tr>
<tr>
<td>LHS/LHH-30</td>
<td>F35</td>
<td>8</td>
<td>356 (14.02)</td>
<td></td>
</tr>
<tr>
<td>LHS/LHH-35</td>
<td>F40</td>
<td>8</td>
<td>406 (15.98)</td>
<td></td>
</tr>
<tr>
<td>LHS/LHH-40</td>
<td>F48</td>
<td>12</td>
<td>483 (19.02)</td>
<td></td>
</tr>
</tbody>
</table>

- Holes in line with axis of actuator (NOT off-center)

Notes:
- Holes in line with axis of actuator (Not off-center)
- Flange torque different from ISO 5211 specification

Important: Position of the keyways with actuator at 0° (closed position).
Figure 32: Actuator Orientation/Installation

HORIZONTAL POSITION OF THE PIPE LINE - VERTICAL POSITION OF VALVE STEM

<table>
<thead>
<tr>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>HVP1</td>
<td>HVP2</td>
<td>HVP3</td>
<td>HVP4</td>
</tr>
</tbody>
</table>

VERTICAL POSITION OF THE PIPE LINE - HORIZONTAL POSITION OF VALVE STEM

<table>
<thead>
<tr>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>HVA1</td>
<td>HVA2</td>
<td>HVA3</td>
<td>HVA4</td>
</tr>
</tbody>
</table>

HORIZONTAL POSITION OF THE PIPE LINE - HORIZONTAL POSITION OF VALVE STEM

<table>
<thead>
<tr>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>VHP1</td>
<td>VHP2</td>
<td>VHP3</td>
</tr>
</tbody>
</table>

LEGEND

- [Diagram of legend elements]
- Note: This document is applicable to a variety of actuators, LPS and LPG (Pneumatic/Single), and LPI (Hydraulic) in both single acting (spring return) and double acting configurations.
Flowserve Limitorque
Fluid-Power Product Sales
via Rio Vallone 17
20883 Mezzago MB
Italy
Fax: +39 039 62060 213
Phone: +39 620 601 200
Email: limitorque@flowserve.com

Flowserve Limitorque
Fluid-Power Product
Manufacturing and Operations
via Rio Vallone 17
20883 Mezzago MB
Italy
Fax: +39 039 62060 213
Phone: +39 620 601 200
Email: limitorque@flowserve.com

Flowserve Limitorque
Fluid-Power Product
Research and Development
Viale dell’Artigianato, 24
29122 Piacenza, PC
Italy
Email: limitorque@flowserve.com

To find your local Flowserve representative, visit www.flowserve.com or call:
USA +1 800 225 6989
International +1 972 910 0774