Contents

1. **Introduction** .. 3
 Safety instruction .. 3

2. **Storage** ... 5
 General .. 5
 Storage indoors ... 5
 Storage outdoors or for a longer period ... 5
 Storage in a warm place ... 5

3. **Design** .. 6

4. **Variants** .. 7

5. **Function** .. 8

6. **Installation** .. 9
 Removal of covers ... 9
 Tubing ... 9
 Air supply requirements ... 9
 Mounting .. 10
 Connections .. 11
 Single action positioner, Direct function .. 12
 Double action positioner, Direct function ... 12
 Electrical connections ... 13
 Signs ... 15
 D3 Digital Positioner model code .. 16

7. **Control** .. 17
 Menus and pushbuttons .. 17
 Other functions .. 17
 Menu indicator ... 18
 Menus ... 18
 Changing parameter values .. 18
 Menu system ... 19
 First start (with calibration sequence) ... 20
 ISA100 Wireless function (WL) ... 23
 Expert Calibration ... 35

8. **Maintenance/service** .. 37
 Disassembling PMV D3 ... 37
 Silencer ... 39
 Potentiometer ... 40
 Transmitter boards .. 40
 Disassembling PMV D3 Ex .. 43
 Filter change .. 44

9. **Trouble shooting** .. 45

10. **Technical data** ... 46

11. **Dimensions** ... 48

12. **Spare parts** .. 51
1. Introduction

The Flowserve PMV D3 is a digital positioner designed primarily for controlling modulating control valves.

The positioner can be used with single or double acting actuators with either rotary or linear movement.

The PMV D3 can be equipped with modules for feedback, limit switches and pressure gauges. Pressure sensors can be installed in the pneumatic block to offer advanced diagnostics.

The modules can be factory assembled before delivery or fitted later.

The modules for feedback and limit switches can contain the following:
- Feedback 4-20 mA
- One of the following functions:
 - Two mechanical contacts
 - Two reed switches
 - Two inductive sensors, EN60947-5-6

Safety instruction
Read the safety instructions in this manual carefully before using the product. The installation, operation, and maintenance of the product must be done by staff with the necessary training and experience. If any questions arise during installation, contact the supplier/sales office before continuing work.

Warning
- The valve package moves when in operation and can cause severe personal injury or property damage if handled incorrectly.
- If the input signal fails or is switched off, the valve moves quickly to its end position.
- If the compressed air supply fails or is turned off, fast movements can occur.
- The valve is not controlled by the input signals when in the Out of Service mode. It will open/close in the event of a leak.
- If a high value is set for Cut off, fast movements can occur.
- When the valve is controlled in the Manual mode, the valve can move quickly.
- Incorrect settings can cause self-oscillation, which can lead to damage.

Important
- Always turn off the compressed air supply before removing or disconnecting the air supply connection or the integral filter. Remove or disconnect with care because air connection "C-" is still under pressure even after the air supply is turned off.
- Always work in an ESD protected area when servicing the circuit boards. Make sure the input signal is switched off.
- The air supply must be free from moisture, water, oil and particles.
Special Conditions for Safe Use
The enclosure of PMV D3I (Intrinsically safe) is made of aluminum and any impact or friction caused by external objects should be avoided in the application.

Spare parts for certified products for hazardous locations
Flowserve will only supply spare parts for PMV Explosion Proof or Intrinsically Safe products to certified purchasers.
In order to be allowed to purchase spare parts for IS and EX products the purchaser must be registered by a proper Notified Body and covered under PMV QAN.

According to IEC 60079-19 section 4 - 4.4.3.2 modifications to the positioner are not permitted.

If the equipment is modified the user shall be informed in writing that the equipment is no longer suitable for use in an explosive atmosphere.

Should you have any questions regarding the above, please feel free to contact us anytime.
2. Storage

General
The PMV D3 positioner is a precision instrument. It is essential that it is handled and stored correctly. Always follow the instructions below!

Note: As soon as the positioner is connected and started, internal air leakage will provide protection against corrosion and prevent the ingress of moisture. For this reason, the air supply pressure should always be kept on.

Storage indoors
Store the positioner in its original packaging. The storage environment must be clean, dry, and cool (15 to 26°C, 59 to 79°F).

Storage outdoors or for a longer period
If the positioner must be stored outdoors, it is important that all the cover screws are tightened and that all connections are properly sealed. The unit should be packed with a desiccant (silica gel) in a plastic bag or similar, covered with plastic, and not exposed to sunlight, rain, or snow.

This is also applicable for long-term storage (more than 1 month) and for transport by sea.

Storage in a warm place
When the positioner is stored in a warm place with a high relative humidity and is subjected to daily temperature variations, the air inside the unit will expand and contract.

This means that air from outside the unit may be drawn into the positioner. Depending on the temperature variations, relative humidity, and other factors, condensation and corrosion can occur inside the unit, which in turn can give rise to functional disorders or a failure.
3. Design

The PMV D3 positioner contains:

- Electronic board with microprocessor, HART modem, Profibus, Foundation Fieldbus, display, etc.
- Valve block
- Positional feedback with potentiometer
- Sealed compartment for electrical connections.

The push buttons and display are accessible underneath the aluminum cover, which is sealed with an O-ring.

A PC configurator is available free of charge on our webpage www.pmv.nu

The only requirements are: D3 positioner must have HART communication and a HART modem for connection between PC and positioner.

With the configurator, settings can be done and saved in the PC, then downloaded to the positioner.
4. Variants

PMV D3 General purpose
The PMV D3 digital positioner has an easy to use user interface with 5 pushbuttons and local graphic LCD display. Communication options include 4-20mA HART, Foundation Fieldbus and Profibus PA. All PMV D3 positioners are available with Feedback, Fail Freeze (Fail in last position and hold when power is lost), 270-degree rotation (for extended travel) and gauge block.

PMV D3 Intrinsically safe
The PMV D3 digital positioner is available in intrinsically safe version for installation in hazardous areas. The intrinsically safe PMV D3 has all the same features and options as the general purpose version, gauge block, local graphic LCD display and feedback option etc. Communication with Hart, Profibus and Foundation Fieldbus is possible.

ATEX:

PMV D3 Explosion proof
The PMV D3 digital positioner is available in explosion proof enclosure. The explosion proof PMV D3 features the same easy to use interface for local configuration as the general purpose version. Communication with Hart, Foundation Fieldbus and Profibus is possible. Further features are gauge ports and local graphic LCD display.

ATEX:

Pressure sensors
Pressure sensors can be installed in the pneumatic block in order to provide advanced diagnostics in combination with ValveSight software.
The control signal function and the feedback from the potentiometer position are converted to digital signals that are processed with a PID algorithm in the microprocessor. This provides control signals to the two piezo-valves.

Valves B and E deliver air to the actuator while valves C and F exhaust air from the actuator to atmosphere. Valves B and C are controlled by Piezo-valve 1 and valve A. Valves E and F are controlled by Piezo-Valve 2 and valve D.

Full supply pressure is directed to valves B and E. Air with filtered and reduced pressure is supplied to valves A, C, D and F.

For double acting actuators, connect C+ and C- to the actuator.

For single acting (spring return) actuators connect C+ to the actuator and plug port C-. Single acting versions have the air block plugged in one end as default. To convert from double to single acting function - see page 11.

Increasing input signal changes position in piezo-valve 1, causing valve A to close.

Supply pressure is then allowed to open valve B and flow to the actuator via the C+ port. When the actuator reaches its new steady state position piezo-valve 1 closes which causes valves B and C to close shutting off supply air to the actuator.

A decreasing input signal functions in the same manner, except uses piezo-valve 2 and valves D, E and F.
6. Installation

Removal of cover
General purpose / Intrinsically safe
Remove cover by first loosening the screw 1 and then the two screws 2.
To install cover, first tighten the screw 1, then the two screws 2.
Tighten to 1.5 — 2 Nm.

Tubing
Use tubes with a minimum inner diameter of Ø 6 mm (1/4").

Air supply requirements
Poor quality in air supply is the main cause of problems in pneumatic systems.

The air supply must be free from moisture, water, oil and particles and delivered @ 2-7 bar (30-105 psi)
Standard: DIN/ISO 8573-1-2001 3.2.3
Filtered to 5 Micron, dew point -40°C/F
Oil 1mg/m³ (0,83 ppm by weight)

The air must come from a refrigeration dried supply or be treated in such a way that its dew point is at least 10°C (18°F) below the lowest expected ambient temperature.

To ensure a stable and problem-free air supply, we recommend the installation of a filter/pressure regulator <5µ as close to the positioner as possible.

Before the air supply is connected to the positioner, we recommend the hose is opened freely for 2 to 3 minutes to allow any contamination to be blown out. Direct the air jet into a large paper bag to trap any water, oil, or other foreign materials. If this indicates that the air system is contaminated, it should be properly cleaned.

WARNING! Do not direct the open air jet towards people or objects because it may cause personal injury or damage.
Mounting

Note: If the positioner is installed in a hazardous environment, it must be of a type approved for this purpose.

All versions of the PMV D3 positioner have an ISO F05 footprint, A. The holes are used to attach the PMV D3 to the mounting bracket B. Please contact PMV or your local distributor representative with actuator specifics for the proper mounting bracket and hardware.

The spindle adapter C can be changed to suit the actuator in question.

It is important that the positioner’s spindle and the lever arms, that transfer the actuator movements, are correctly mounted. Any tension between these parts can cause incorrect operation and abnormal wear.
Connections

Air:
Port S Supply air, 2-7 bar (30–105 psi)
Port C+ Connection to actuator, opening
Port C- Connection to actuator, closing (only for double action)
Plug for single action, see below

Electrical connection
See pages 13, 14.

Dimensions
Air connections:
¼” NPT alt. G ¼”
Electrical connection:
M20 x 1.5 alt. NPT ½”

Loctite 577 or equivalent is recommended as a sealant to protect all connections.

Converting the D3 between single acting and double acting mode

When using the D3 (all versions) in single acting mode, the external C- port as well as the air block need to be blocked. (Air block plug installed per default when ordered for single acting use.)

Plug the air block (acc. to the picture) with the nylon plug and o-ring. (item 3-45).

When in double acting mode, the nylon plug must be removed and the C- port connection opened.

Must be plugged when converting to single action function.

For data for air and electrical connections, see section Technical Data on page 46.
Single acting positioner, Direct function

Actuator with closing spring
When the control signal increases, the pressure $C+$ to the actuator is increased. The valve stem moves upward and rotates the positioner spindle counter-clockwise. When the control signal drops to zero, $C+$ is vented and the valve closes.

Reverse function
Actuator with opening spring
When the control signal increases the pressure $C+$ to the actuator is increased. The valve stem moves downward and the positioner spindle rotates clockwise. When the control signal drops to zero, $C+$ is vented and the valve opens.

Double acting positioner, Direct function

Double action actuator
When the control signal increases, the pressure $C+$ to the actuator is increased. The valve stem is pressed upward and rotates the positioner spindle counter-clockwise. When the control signal is reduced, the pressure $C-$ to the actuator increases and the valve spindle is pressed downward. If the control signal disappears, the pressure goes to $C-$, $C+$ vents, and the valve closes.

Fail in place (Fail Freeze)
When the input signal drops below 3.75 mA, the Fail Freeze function holds the actuator/valve at current position.

Drift rate in midrange $<0.1\%$ after 30 seconds and $<2\%$ after 30 minutes.
Electrical connections

Terminal block diagram for the PMV D3 and PMV D3 Ex.

PMV D3

The terminal block (below) for the positioner is accessible when the aluminum cover and inner cover are removed, see Section 8.

Remote unit

The remote unit shall be connected between terminals 3, 4 and 5 in the PMV D3 and 7, 8 and 9 in the remote unit. Use a shielded cable and ground it to the PMV D3 or to the remote unit. (Not both units at the same time.)

Warning! In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.

Max distance between PMV D3 and remote unit: 5m (16.4 ft).

When installing the PMV D3 Intrinsically safe unit - always consider control drawing 3-86 found at www.pmv.nu/downloads.

PMV D3, 12 terminals

Connection

![Terminal block diagram]

Option

1. Input signal + 4-20 mA, Hart, Profibus PA, Foundation Fieldbus
2. Input signal – 4-20 mA, Hart, Profibus PA, Foundation Fieldbus
3. Switch 1 NO/Remote
4. Switch 1 NC/Remote
5. Switch 1 COM/Remote
6. Switch 2 NO
7. Switch 2 NC
8. Switch 2 COM
9. 4-20 mA + Feedback, 11-28 V DC
10. 4-20 mA – Feedback, 11-28 V DC
11. Alarm output +, 8-28 V DC
12. Alarm output –, 8-28 V DC

Connecting a remote unit

![Remote unit connection diagram]
PMV D3 Ex
The terminal (below) for the positioner is accessible when the terminal cover is removed, see Section 8.

For more data with electrical ratings and barrier values - please download control drawing cdwg 3-86 from www.pmv.nu/downloads

Warning! In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.

PMV D3 Ex

Connection

1. **Input signal + 4-20 mA**, Hart, Profibus PA, Foundation Fieldbus
2. **Input signal – 4-20 mA**, Hart, Profibus PA, Foundation Fieldbus
3. Remote unit
4. Remote unit
5. Remote unit
6. Remote unit
7. 4-20 mA + Feedback, 11-28 V DC
8. 4-20 mA – Feedback, 11-28 V DC
9. Alarm output +, 8-28 V DC
10. Alarm output –, 8-28 V DC

PMV D3 Ex Profibus DP

Connection

1. **Input signal +24V Profibus DP**
2. **Input signal -24V Profibus DP**
3. Remote unit
4. Remote unit
5. Remote unit
6. Profibus DP Communication
7. Profibus DP Communication
8. Digital Ground
General purpose and Intrinsically safe housing

Ex ia IIC T4 Ga , Ta=-30,+80 °C, NEMKO 03ATEX110X
INTRINSICALLY SAFE/SECURITE INTRINSIQUE-Exia
When installed in accordance with installation drawing:3-86C
WARNING! Substitution of components may impair intrinsic safety.

AVERTISSEMENT! La substitution de composants peut compromettre a securite intrinsique.

FISCO field device

Flowserve, Sweden
Palmstierna International
Solna, Sweden
www.flowserve.com

Explosion proof housing

EXPLOSION PROOF DIGITAL VALVE POSITIONER

Product Code: D3abcdeefffghij

Class I Div.1 Grps. B,C&D Class II Div1 Grps E,F,G
T6(Ta:+65°C/+149°F) T5(Ta:+80°C/176°F) Type 4X

Ex II 2G Ex d IIB+H 2 T6 Gb (-20°C to +60°C) NEMKO 03ATEX 111
Ex II 2D Ex tb IIIC T100°C Db (-20°C to +80°C) IP66

Ex d IIB+H 2 T6 Gb (-20°C to +60°C) NEMKO 03ATEX 111
Ex tb IIIC T100°C Db (-20°C to +80°C) IP66

Electrical Rating: max 28V DC, max24mA, max0.67W
Do not open while energized! Seal within 50 mm of the enclosure.
Max. working pressure: 700kPa/100 psi

PALMSTIerna INTERNATIONAL AB, SOLNA SWEDEN

Prod year-serial number P/N: D3E-XX
D3 Digital Positioner model code

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model no</td>
<td>Connections</td>
<td>Surface treatment</td>
<td>Function</td>
<td>Spindle</td>
<td>Cover and Indicator (No indicator on D3E, D3F)</td>
<td>Sensors/Seals</td>
<td>Input Signal/Protocol</td>
<td>Feedback Option (Limitations for D3E)</td>
<td>Accessories</td>
</tr>
<tr>
<td>D3X</td>
<td>G 1/4” G air, M20 x 1,5 electrical</td>
<td>U Powder epoxy</td>
<td>Single acting</td>
<td>23 Rotary VDI/VDE 3845</td>
<td>PVA Black PMV, 90 deg, Arrow indicator</td>
<td>Z No pressure sensors, NBR -30 to 80 deg C (-40 deg C for non-certified versions)</td>
<td>4 4-20 mA</td>
<td>X No feedback option</td>
<td></td>
</tr>
<tr>
<td>D3Z</td>
<td>N 1/4” NPT air, 1/2” NPT electrical</td>
<td></td>
<td>Single acting, Fail Freeze</td>
<td>39 D type with thread/nut for Linear actuators</td>
<td>PVB Black, Extended travel, 270 deg Arrow indicator</td>
<td>Y On Board pressure sensors, NBR -30 to 80 deg C (-40 deg C for non-certified versions)</td>
<td>5 HART, 4-20 mA</td>
<td>T* Plug in 4-20 mA transmitter only + Alarm module</td>
<td></td>
</tr>
<tr>
<td>D3I</td>
<td>M 1/4” NPT air, M20 x 1,5 electrical</td>
<td></td>
<td>Single acting, Fail freeze remote mounted</td>
<td>09 Double D type & adapter spindle for 01/02/06/21/26/30/36/41</td>
<td>FSW White cover, Flowserve, 90 deg, Arrow indicator</td>
<td></td>
<td></td>
<td>B* Limit switches MEC + 4-20 mA + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3I</td>
<td></td>
<td></td>
<td>Single acting, remote mounted</td>
<td>BA BASF special unit with, Spindle 39 With adapter</td>
<td>FSY Yellow cover, Flowserve, 90 deg, Arrow indicator</td>
<td></td>
<td></td>
<td>N* Limit sensors NAM + 4-20 mA + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3Y</td>
<td></td>
<td></td>
<td>Double acting acting</td>
<td></td>
<td>WCA Worcester Controls, Arrow indicator</td>
<td></td>
<td></td>
<td>P* Limit switches PXY + 4-20 mA + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3Y</td>
<td></td>
<td></td>
<td>Double acting high-flow (A=D3X only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4* Slot type Namur sensor, P+F SJ2 S1N + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Double acting high-flow remote (A=D3X only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5* Slot type Namur sensor, P+F SJ2 SN + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Double acting Fail Freeze function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6* Slot type Namur sensor, P+F SJ2N + Alarm</td>
<td></td>
</tr>
<tr>
<td>D3F</td>
<td></td>
<td></td>
<td>Double acting Fail freeze remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3F</td>
<td></td>
<td></td>
<td>Double acting Remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail Freeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail freeze remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail Freeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail freeze remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail Freeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail freeze remote mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3E</td>
<td></td>
<td></td>
<td>Single acting, Fail Freeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not for D3E, D3F
7. Control

Menus and pushbuttons
The positioner is controlled using the five pushbuttons and the display, which are accessible when the aluminum cover is removed. For normal functioning, the display shows the current value. Press the ESC button for two seconds to display the main menu.

Use the pushbuttons to browse through the main menu and the sub-menus.

The main menu is divided up into a basic menu and a full menu, see page 19.

Other functions
ESC
Exit the menu without making any changes (as long as any changes have not been confirmed with OK).

FUNC
To select function and change parameters.

OK
To confirm selection or change of parameters.

MENU INDICATOR
Displays the position of the current menu row in the menu.

IN SERVICE
The positioner is following the input signal. This is the normal status when the positioner is working.

OUT OF SERVICE
The positioner is not following the input signal. Critical parameters can be changed.

MANUAL
The positioner can be adjusted manually using the pushbuttons. See section “Man/Auto”, page 28.

UNPROTECTED
Most of the parameters can be changed when the positioner is in the "Unprotected" position. However, critical parameters are locked when the positioner is in the “In service” position.
Menu indicator
There are indicators at both sides of the display window and they indicate as follows:

- Flashing in position Out of service
- Flashing in position Manual
- Displayed in position Unprotected

The indicators on the right-hand side show the position in the current menu.

Menus
To display the menus you can select:

- Basic menu, which means you can browse through four different steps
- Full menu, which comprises ten steps. Use the Shift Menu to browse through the steps

Full Menu can be locked out using a passcode.

The main menus are shown on the next page and the sub-menus on the subsequent pages.

Changing parameter values
Change by pressing \(\uparrow \) \(\downarrow \) until the desired figure is flashing.

Press \(\rightarrow \) to step to the desired figure. Confirm by pressing OK.

A change can be undone by pressing the ESC button, which returns you to the previous menu.
Menu system

The menus are described on the following pages.
First start
“Calibrate” is displayed in the basic menu automatically, the first time power is applied. It can be selected from the basic/main menu at any time.

A complete auto-calibration takes up to 30 minutes depending on size of actuator and includes end limit calibration, auto-tuning, leak test and a check of the movement speed. Start the automatic calibration by selecting **Auto-Cal** and then answer the questions in the display by pressing **OK** or the respective arrow. The menu is described on page 24.

Calibration error messages
If a fault occurs during calibration, one of the following error messages can be displayed:

- **No movement/press ESC to abort**
 Typically the result of an air delivery issue to the actuator, or incorrect mounting and/or linkage arrangement. Check for proper supply air to the positioner, pinched tubing, proper actuator sizing, proper linkage and mounting arrangement.

- **Pot uncalibrated/press ESC to abort**
 The potentiometer has been set to an illegal value. The potentiometer is aligned using the **Calibrate - Expert cal - pot** Menu. The calibration sequence must be restarted after the fault is corrected.

- **Air leak detected/ESC = abort OK = go on**
 An air leak has been detected. The calibration sequence should be restarted after the fault is corrected.

First start, Profibus PA/DP
For Profibus PA, connect the input signal at pos 1 and 2 on the terminal block. For Profibus DP, connect power to pos 1(+) and 2(-) and communication to pos 6 and 7. See Electrical connections on Page 13.

In the SETUP/Devicedata/Profibus: change the address from 126 to any number between 1-125.

Never use the same number with more than one unit. Install values in failsafe mode, for communication when there is loss of signal.
Calibrate the unit.
GSD files are available at our web-page www.pmv.nu

To install the D3_PROFIBUS.DDL file to Siemens SIMATIC PDM.
1. Move the files to the directory where the DeviceInstall.exe is located.
2. Run DeviceInstall.exe

For Expert Calibration parameters - see page 35
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Setpoint</td>
<td>4+1=5</td>
</tr>
<tr>
<td></td>
<td>The SP has 5 bytes, 4 bytes for the float value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and one status byte. The status byte needs to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>be 128 (0x80Hex) or higher for the D3 to accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>it.</td>
<td></td>
</tr>
<tr>
<td>READBACK</td>
<td>Position</td>
<td>4+1=5</td>
</tr>
<tr>
<td></td>
<td>The READBACK has 5 bytes, 4 bytes for the float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>value and one status byte.</td>
<td></td>
</tr>
<tr>
<td>POS_D</td>
<td>Digital position</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Returns actual position as a digital value with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>definitions as below</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Not initialized</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Opened</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Intermediate</td>
<td></td>
</tr>
<tr>
<td>CHECKBACK</td>
<td>Detailed information of the device, coded bit</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>wise. Several messages can occur at the same</td>
<td></td>
</tr>
<tr>
<td>RCAS_IN</td>
<td>Remote Cascade</td>
<td>4+1=5</td>
</tr>
<tr>
<td></td>
<td>The RCAS_IN has 5 bytes, 4 bytes for the float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>value and one status byte.</td>
<td></td>
</tr>
<tr>
<td>RCAS_OUT</td>
<td>Remote Cascade</td>
<td>4+1=5</td>
</tr>
<tr>
<td></td>
<td>The RCAS_OUT has 5 bytes, 4 bytes for the float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>value and one status byte.</td>
<td></td>
</tr>
</tbody>
</table>

Status Byte Table

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
<th>Meaning</th>
<th>D3 info</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 0 1 0 0 x x</td>
<td>Not connected</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 0 1 1 1 x x</td>
<td>Device failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROFIBUS PA module failure</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 1 0 0 x x</td>
<td>Sensor failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No sensor value</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 1 1 1 x x</td>
<td>Out of service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI Function Block in O/S mode</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 0 0 0 x x</td>
<td>Good - Non cascade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured value OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Alarm values used</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>OK</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 1 0 0 1</td>
<td>Below low limit Lo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisory alarm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 1 0 1 1</td>
<td>Above high limit Hi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisory alarm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 1 1 0 1</td>
<td>Lo-Lo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical alarm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 1 1 1 1</td>
<td>Hi-Hi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical alarm</td>
<td></td>
</tr>
</tbody>
</table>

Example SP = 43.7% and 50%

<table>
<thead>
<tr>
<th>Float</th>
<th>Hex</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.7</td>
<td>42 2E CC CD</td>
<td>80</td>
</tr>
<tr>
<td>50.0</td>
<td>42 48 00 00</td>
<td>80</td>
</tr>
</tbody>
</table>
(FF) Foundation Fieldbus function blocks

Function blocks are sets of data sorted by function and use. They can be connected to each other to solve a control process, or to a controlling DCS. To get a good introduction and understanding of FF look at www.fieldbus.org and download the “Technical Overview” from the About FF pages.

(TB) Transducer Block

The TB contains unit specific data. Most of the parameters are the same as parameters found on the display. The data and the order of data varies between different products. The AO-block setpoint (SP) and process value (PV) parameters are transceived to the TB through a channel. The TB has to be in AUTO for the AO-block to be in AUTO.

The positioner has to be in menu-auto mode and in service to be controlled from the fieldbus. If the positioner is placed in menu-manual mode then the transducer block will be forced to (LO) local override. In this way an operator in the field will be able to control the positioner from the keypad, without affecting a control loop.

(RB) Resource Block

The RB is a set of parameters that looks the same for all units and products. The values of the RB define unit information that concerns the Fieldbus Protocol such as MANUFAC_ID which informs the unique manufacturer id. For Flowserve it is 0x464C53.

The RB has to be in AUTO for the AO-block to be in AUTO.

(AO) Analogue Output Block

The AO follows Fieldbus Foundation’s standard on content and action. It is used for transferring (SP) setpoints from the bus to the positioner.

CAS_IN (cascade input) and RCAS_IN (remote cascade input) are selected as inputs to the AO block depending on the MODE_BLK parameter. The selected input will be relayed to the SP parameter of the AO block. BKCAL_OUT (back calculated output) is a calculated output that can be sent back to a controlling object so that control bumps can be avoided. Usually the BKCAL_OUT is set to be the (PV) process value of the AO-block, i.e. the actual measured position of the valve.

OUT is the primary calculated output of the AO block. During a limited action (ramping) of the AO block the RCAS_OUT parameter will supply the final setpoint and the OUT parameter will be the limited output.

The transducer block is connected through a channel to the AO block. Through this channel the OUT value and SP are transceived.

In order to set the AO block to AUTO, the TB and the RB have to be in AUTO. Further, the AO block has to be scheduled. Using a fieldbus configurator from, for example, National Instruments or Honeywell, scheduling can be done by adding the unit to a project and then clicking on the “upload to device” icon.

To write a setpoint value by hand, add Man to MODE->Permitted parameter, and then choose MODE->Target to Man. Make sure that the unit is scheduled.

Example

A typical FF block loop control might look like the following:

Where the positioner is represented by the AO-block.
(WL) ISA100 Wireless function

The wireless D3 can be connected to an ISA100 wireless control system and perform regular control tasks. A normal update rate of the wireless AO block automatic control setpoint (OP) is 1 second. This setpoint is published to the device from the gateway. The variable to publish is configured in a wireless configurator tool. The readback value is also configured in this tool.

After configuring the wireless network and gateway, the D3 will join the network after a joining time. The D3 is then ready to start receiving the OP setpoint and do control work. The OP status is then Good Cascade and the AO block mode is Cascade/Auto.

In case the setpoint is lost for a time of the stale limit + FSTATE_TIME, the D3 will go into a safe state as defined by the FSTATE_OPT parameter.

D3 parameters can be viewed and set by a device management application that communicates with the gateway.

This application is DD-based. Before starting to get the D3 to join the network, the D3 has to be autocalibrated and provisioned for the network.

With a provisioning tool, the network number and device tag can be set.

To get the wireless D3 DD and recommendations for configuration tools, please contact PMV at:

Palmstierna International AB
Korta gatan 9
171 54 Solna
Sweden
infopmv@flowserve.com
The various menu texts are described below.

Auto-Cal

Start tune
Starts the tuning. Questions/commands are displayed during calibration. Select the type of movement, function, etc. with and confirm with **OK**.

Lose prev value? OK?
A warning that the value set previously will be lost (not during the first auto-tuning).

Actuator? rotating
Select for rotating actuator.

Actuator? linear
Select for linear actuator.

Actuator single act
Select for single act.

Actuator double act
Select for double act.

Direction? direct
Select for direct function.

Direction? reverse
Select for reverse function.

In service? Press OK
Calibration finished. Press OK to start positioner functioning.
(If ESC is pressed, the positioner assumes the “Out of service” position but the calibration is retained).

TravelCal

Start cal
Start end position calibration.

Lose prev value? OK?
A warning that the previously set value will be lost.
Confirm with OK.
The calibration sequence starts.

In service? Press OK
Calibration finished. Press OK to start positioner functioning.
(If ESC is pressed, the positioner assumes the “Out of service” position but the calibration is retained).

Perform

Setting gain

Normal
100% gain

Perform 50%, 25%, 12%, L, M, S
Possibility to select a lower gain in steps.

L, M, S
Preset values for L, M, S actuators

Factory set
Resets all set values and enters Factory Mode. **Should only be used by authorized staff.**

Note. Original P. I. D. will always be shown in display
The menu contents are shown in the figures on the right and the texts are described below:

Current values can be read using the Read Menu and some values can be reset.

Pos
Shows current position

Set&pos
Set point and position

Set&dev
Set point and deviation

Pos graph
Shows position graph

Temp
Shows current temperature

Statistics

- **n cycles**
 Shows number of movements (turns)

- **Pulse rate**
 Shows pulse rate

- **Acc travel**
 Shows accumulated movement

- **mean dev**
 Shows accumulated deviation in %

- **m.abs dev**
 Shows accumulated absolute deviation in %

- **# of resets**
 Shows number of resets

- **runtime**
 Shows accumulated runtime since last reset

- **Extr temp**
 Shows extreme min and max temperature

- **Histogram**
 Shows position and time for position value

- **Alarms**
 Displays tripped alarms
The Man/Auto menu is used to change between manual and automatic modes.

The menu contents are shown in the figures on the right and the various texts are described below:

AUT, OK = MAN
Positioner in automatic mode

MAN, OK = AUT
Positioner in manual mode

In the **MAN** mode, the value of POS can be changed using the push-buttons increase/decrease the value in steps. The value can also be changed in the same way as for the other parameter values, as described on page 18.

Other functions
C+ can be fully opened by pressing and then immediately OK simultaneously.

C- can be fully opened by pressing and OK simultaneously.

C+ and C- can be fully opened for blowing clean by pressing and OK simultaneously.

When changing between **MAN** and **AUT** mode, the **OK** button must be pressed for 3 seconds.
The Shift Menu is used to choose between the basic menu and the full menu.

The menu contents are shown in the figures on the right and the various texts are described below:

No Full menu selected.

Yes Basic menu selected.

Full Menu can be locked with a passcode, see Setup menu.

The Status Menu is used to select whether or not the positioner is in service.

The menu contents are shown in the figures on the right and the various texts are described below:

o o service Not in service. Flashing indicator in upper left-hand corner of display.

in service Positioner in service. Critical parameters cannot be changed.

When changing between In service and Out of service, the OK button must be pressed for 3 seconds.
The Setup Menu is used for various settings.

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Type of actuator</th>
<th>Size of actuator</th>
<th>Time out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotating</td>
<td>Rotating actuator.</td>
<td>Small</td>
<td>10 s</td>
</tr>
<tr>
<td>Linear</td>
<td>Linear actuator.</td>
<td>Medium</td>
<td>25 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large</td>
<td>60 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Texas</td>
<td>180 s</td>
</tr>
<tr>
<td>Lever</td>
<td>Only for linear actuator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lever stroke</td>
<td>Stroke length to achieve correct display.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level cal</td>
<td>Calibration of positions to achieve correct display.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direction

- Direct: Direct function (signal increase opens). Indicator/spindle rotates counter-clockwise.
- Reverse: Reverse function.

Character

Curves that show position as a function of input signal.

- **Linear**
- **Equal %** See diagram.
- **Quick open**
- **Sqr root**
- **Custom** Create own curve.

Cust chr

Specify number of points
(3, 5, 9, 17, or 33)

Cust curve Enter values on X and Y axes.

Curr range

- **0%=4.0 mA**
- **100%=20.0 mA** Possibility of selecting which input signal values will correspond to 0% and 100% movement respectively. Examples of settings:
 - 4 mA = 0%, 12 mA = 100%, 12 mA = 0%, 20 mA = 100%.
TRVL range

<table>
<thead>
<tr>
<th>TRVL range</th>
<th>Setting end positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%=0.0%</td>
<td>Select Out of Service.</td>
</tr>
<tr>
<td></td>
<td>Set percentage value</td>
</tr>
<tr>
<td></td>
<td>for desired end position (e.g. 3%).</td>
</tr>
</tbody>
</table>

Set 0%

- Select In Service.
- Connect calibrator.
- Move forward to desired end position (0%) and press OK.

100%=100.0%

- Select Out of Service.
- Set percentage value for desired end position (e.g. 97%).

Set 100%

- Select In Service.
- Connect calibrator. Move forward to desired end position (100%) and press OK.

Trvl ctrl

Behavior at set end position

- **Set low**
 - Choose between Free (go to mechanical stop), Limit (stop at set end position), and Cut off (go directly to mechanical stop at set end position).

- **Set high**
 - Similar to Set low.
 - Select position for Cut off and Limit at the respective end positions.

Passcodes

- Setting passcodes for various functions.
- **Full menu**
 - Passcode for access to full menu.
- **Write prot**
 - Passcode for removing write protect.
- **Expert**
 - Passcode for access to Expert menu (TUNING).
- **Fact set**
 - Passcode to return to default values applicable when positioner was delivered.

Numbers between 0000 and 9999 can be used as passcodes. 0 = no passcode required.

Appearance

- **On display**
- **Language**
 - Select menu language.

Units

- Select units.

Def. Display

- Select value(s) to be displayed during service.
- The display reverts to this value 10 minutes after any change is made.

Start menu

- Start in Basic menu or Full menu.

Orient

- Orientation of text on display.

Par mode

- Display of control parameters such as P, I, D or K, Ti, Td.

Devicedata

- **HW rew**
 - General parameters.
- **SW rew**
 - General parameters.

Capability

- **HART**
 - Menu with HART parameters. Only amendable with HART communicator. It is possible to read from display.

Profibus PA/DP

- **Status**
 - Indicates present status.
- **Device ID**
 - Serial number
- **Address**
 - 1-126
- **Tag**
 - Alotted ID
- **Descriptor**
 - ID description
- **Date**
 - SW release date
- **Failsafe**
 - Value = preset pos
 - Time = Set time +10sec=
 - time before movement
 - Valve act = failsafe
 - (preset pos) or last value
 - (present pos)
 - Alarm out= On/Off

Foundation Fieldbus

- **Device ID**
 - Serial number
- **Nod address**
 - Address on the bus provided by the DCS system
- **TAG–PD_TAG**
 - Name provided by the DCS system
- **Descriptor**
 - PMV D3 positioner
- **Date**
 - SW release date
- **Sim jumper**
 - Simulate jumper, FF simulation functionality activated = ON
Close time Minimum time (Min 0.005) from fully open to closed.
Open time Minimum time (Min 0.05) from closed to fully open.
Deadband Setting deadband. Min. 0.2%.
Expert Advanced settings.
Control See explanations below.
Togglestep Test tool for checking functions. Overlays a square wave on the set value.
Self test Internal test of processor, potentiometer, etc.
Leakage Air leakage in actuator/tubing can be compensated by settings.
Undo You can read last 20 changes.

P,I,D and K,Ti,Td parameters
If one of the gains is changed, the corresponding value in the other gain set is changed accordingly.

Min Pulse
The minimum pulse lengths (the “minpulses”) are displayed in the menu, and can be changed.
Normal values are:
DN1, DN2: 2750 to 4300
UP1, UP2: 3750 to 5220

Reduction of pulses
This function monitors the number of pulses vs time. In case of an excessive number of pulses vs. time, an automatic reduction of pulses is enabled in order to extend the service life.
This function is enabled as default.

Spring adjust
The spring adjust function compensates the airflow linearly with the actuator C+ chamber volume (for a constant position error), so that low volumes get less flow. This is needed for linear single-acting actuators, where a low C+ volume means that the actuator spring is extended, its force is reduced, and less flow is needed for stable position changes.
Deviation
Alarm generated when deviation occurs.

On/Off
Alarm on/off.

Distance
Allowed distance before alarm is generated.

Time
Total deviation time before alarm is generated.

Alarm out
Select ON/OFF offers output on terminals.

Valve act
Behavior of valve when alarm is generated.

Limit 1
Alarm above/below a certain level.

On/Off
Alarm on/off.

Minipos
Setting of desired min. position.

Maxpos
Setting of desired max. position.

Hysteresis
Desired hysteresis.

Alarm on
Select ON/OFF offers output on terminals.

Valve act
Behavior of valve when alarm is generated.

Limit 2
See Limit 1.

See diagram below!
Temp

- **Alarm based on temperature**
- Temperature alarm on/off.

On/Off

- **Temperature setting.**

Low temp

- **Temperature setting.**

High temp

- **Temperature setting.**

Hysteresis

- **Allowed hysteresis.**

Alarm out

- **Select ON/OFF offers output on terminals.**

Valve act

- **Behavior of valve when alarm is generated.**

<table>
<thead>
<tr>
<th>Valve act</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No action</td>
<td>Alarm generated only. Operations not affected.</td>
</tr>
<tr>
<td>Goto open</td>
<td>C+ gives full pressure and valve moves to fully open position. Positioner changes to position Manual.</td>
</tr>
<tr>
<td>Goto close</td>
<td>C- gives full pressure and valve moves to fully closed position. Positioner changes to position Manual.</td>
</tr>
</tbody>
</table>
Expert Calibration

When entering "ExpertCal" mode - walk through the list of parameters described below. Set values where applicable. Confirm by pressing OK.

Set point LO: Use the calibrator set to 4 mA (or set another value on the display). Press OK.

Set point HI: Use a calibrator of 20 mA (or set another value on the display). Press OK.

Pressure LO: Use a supply of 2 bar (30 psi) (or set another value on the display). Press OK. Pressure read out only possible on PMV D3 with built in pressure sensor.

Pressure HI: Use a supply of 7 bar (105 psi) (or set another value on the display). Press OK. Pressure read out only possible on PMV D3 with built in pressure sensor.

Transmitter: Connect 10 - 28 VDC. Connect an external mA meter to the loop. Read low value on mA meter and adjust with up/down key. Press OK to set low value. Repeat procedure to set High value. Also see video on www.pmv.nu

Pot: Potentiometer setting, see section 8. Also see video on www.pmv.nu

Full reset: Resets all set values.

The menu contents are shown in the chart below.

The default values that were set on delivery can be reset using the Fact Set menu. Values from calibration and from other settings will then be lost.
Single Board

12 terminals

Menu HART version

<table>
<thead>
<tr>
<th>READ</th>
<th>pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN/AUTO</td>
<td>AUT,OK=MAN</td>
</tr>
<tr>
<td>CALIBRATE</td>
<td>normal</td>
</tr>
<tr>
<td>Travel Cal</td>
<td>set & pos</td>
</tr>
<tr>
<td>Leak test</td>
<td>50%</td>
</tr>
<tr>
<td>Pulse tune</td>
<td>25%</td>
</tr>
<tr>
<td>Step tune</td>
<td>12%</td>
</tr>
<tr>
<td>Pres. est.</td>
<td>Setpoint</td>
</tr>
<tr>
<td>Pres. set.</td>
<td>preset L</td>
</tr>
<tr>
<td>Perform</td>
<td>Pressure</td>
</tr>
<tr>
<td>Expert cal</td>
<td>Transm.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIFT MENU

<table>
<thead>
<tr>
<th>Basic menu</th>
<th>Full menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>O & SERVIC</td>
<td>IN SERVICE</td>
</tr>
</tbody>
</table>

STATUS

<table>
<thead>
<tr>
<th>type</th>
<th>Rotating</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>single act</td>
<td>dual act</td>
</tr>
<tr>
<td>medium</td>
<td>large</td>
<td></td>
</tr>
</tbody>
</table>

SETUP

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Texas-size</th>
</tr>
</thead>
</table>

Actuator

<table>
<thead>
<tr>
<th>Lever (*)</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct</td>
<td>reverse</td>
</tr>
</tbody>
</table>

Character

<table>
<thead>
<tr>
<th>Cost chr</th>
<th>kVf points</th>
<th>X0=</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal %</td>
<td>0%</td>
<td>Set 0%</td>
</tr>
<tr>
<td>quick open</td>
<td>100%</td>
<td>Set 100%</td>
</tr>
<tr>
<td>custom</td>
<td>100%=</td>
<td>Set 100%</td>
</tr>
</tbody>
</table>

Unit

<table>
<thead>
<tr>
<th>Units</th>
<th>Setpoint</th>
<th>degrees</th>
<th>inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad C</td>
<td>degrees</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Grad F</td>
<td>Kelvin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Def. Disp.

<table>
<thead>
<tr>
<th>Def. Disp.</th>
<th>pos</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>set & pos</td>
<td>Tag</td>
<td></td>
</tr>
<tr>
<td>Sel. dev</td>
<td>Descriptor</td>
<td></td>
</tr>
</tbody>
</table>

TUNING

<table>
<thead>
<tr>
<th>Control</th>
<th>P.I.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>Kti,Td</td>
</tr>
</tbody>
</table>

ALARMS

<table>
<thead>
<tr>
<th>Limit 1</th>
<th>Minpos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td></td>
</tr>
<tr>
<td>Limit 2</td>
<td>Maxpos</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>On/off</td>
</tr>
<tr>
<td>Valve act</td>
<td>Alarm out</td>
</tr>
<tr>
<td>Pos=Pres</td>
<td>Alarm out</td>
</tr>
<tr>
<td>Pressure</td>
<td>Alarm out</td>
</tr>
<tr>
<td>Temp</td>
<td>Alarm out</td>
</tr>
</tbody>
</table>

FACT SET

| no | yes |

(1) (*) appear if Linear set
(2) (**) appear if pressure sensor exist
(3) (***) only settable when in Service mode
(4) (x) Position is show in upper row (PID, KTI/Td, Min Pulse)
8. Maintenance/service

When carrying out service, replacing a circuit board, etc., it may be necessary to remove and refit various parts of the positioner. This is described on the following pages.

Read the Safety Instructions on page 3 and 4 before starting work on the positioner.

Cleanliness is essential when working with the positioner. Contamination in the air ducts will inevitably lead to operational disturbances. Do not disassemble the unit more than that described here.

Do not take the valve block apart because its function will be impaired.

When working with the PMV D3 positioner, the work place must be equipped with ESD protection before the work is started.

⚠️ Always turn off the air and electrical supplies before starting any work.

⚠️ Please see section for special conditions for safe use and spare parts on page 4.

Please contact a Flowserve office for information regarding proper procedures. www.pmv.nu or infopmv@flowserve.com

Disassembling PMV D3

Removing cover and inner cover

• Unscrew the screws A and remove the cover. When mounting cover – see page 9.

• Pull off the arrow pointer, B, using a small screw driver.

• Unscrew the screws C, pull the inner cover slightly in the direction of the arrow, and remove the cover. Do not remove the filter plug.
Circuit boards (PCB)

Disconnect or switch off the electric power supply before starting any work.

- Lift off the display PCB, D.

- Release the cable connections E, F and G,

- Unscrew the spacers H and lift up the terminal board I.
Valve block

⚠️ Turn off the air and electric power supply before starting any work.

- Remove the four screws and lift out the valve block

Note: Do not disassemble the valve block

- When installing the valve block — torque the four screws cross-wise to 2.5 Nm and seal with Loctite® 222.

Silencer

A silencer, L (option) can be mounted under the plate M on the PMV D3. Contact PMV.
Potentiometer

90° and 270° spring loaded potentiometer
The spring-loaded potentiometer K can be removed from the gearwheel for calibration or replacement.

If the potentiometer is replaced or the setting is changed, it must be calibrated.

- Select the menu Calibrate - Expert - Cal pot. The display shows Set gear (1).
- Turn the spindle shaft (2) clockwise to end position and press OK. Turn counter clockwise to the end and press OK.
- Unmesh the potentiometer (3) and turn it according to display until OK is shown. Press OK.
- Re-align spring on potentiometer to secure it.

Transmitter boards
The equipment for transmitter feedback consists of a circuit board A, cam assembly B and screws.

General PCB versions:
- with mechanical switches, SPDT
- with NAMUR sensors, DIN 19234
- with proximity switches
- with feedback transmitter and/or remote only
Transmitter board installation

⚠️ Caution! Turn off the power and air supply before starting the installation.

⚠️ Maintenance and repairs on PMV D3 units with hazardous area approvals should only be made by authorized staff.

- Remove the cover, indicator and inner cover according to the description on page 37.

- Check that both spacers C are installed.

- Carefully mount the PCB in its position. The pins D should fit in the connector and the positioner’s motherboard. Make sure that the feedback PCB is properly connected.

- Secure the PCB with the enclosed screws E.

- Install the cam assembly B on the shaft and push it down to its position. If the board has microswitches, be careful not to damage the levers.
• Tighten the screws **F**, on the cam assembly. Do not tighten the screws too hard. The cams should be able to move relative to each other.

• Install the inner cover with the two screws, **G**.

• Connect the wiring for the transmitter feedback on the terminal block, according to the drawings on the following two pages.

• Adjust the position where the switches/sensors should be affected, by turning the cams with a screwdriver.

• Tighten the cam assembly screws **F** when the cams are correctly adjusted.

• Install the indicator and cover. To calibrate the feedback transmitter, see drawings on the following two pages.
When installing the transmitter card, make sure it is placed correctly over the connector pins before gently pushing it down until it rests on the supports. Secure the PC board with the 2 screws. Make sure the holes are centred before tightening the screws.

When installing the cam assembly for mechanical switches, retract both the switch arms first. Install the cam assembly and tighten the screws loosely to obtain enough friction to lock the cams. Adjust the lower cam first, and then the upper cam. Secure cams setting by tightening the two screws hard. The upper cam should trip switch/sensor no. 2.
Feedback option (cont.)

Feedback kit: D3-As38T

Mechanical & Proximity switches

P+F Namur sensors

IMPORTANT:
- For D3 IS units (Intrinsically Safe):
- Transmitter card NOT for on site mounting by customer.
- FM, CSA and ATEX certificates only valid when transmitter card is mounted by manufacturer.

Calibration of the 4–20 mA transmitter

Go to menu shown in diagram.
Connect mA meter I and check reading.
Adjust output signal using Up or Down key until meter I reads 4.00 mA.
Finish by pressing OK.
Repeat the above for 20 mA.

MECHANICAL SWITCHES
Type: SPDT
Rating: Sub Sub Miniature
3A 125V AC / 2A 30V DC

NAMUR_SENSORS_P+F
Type: Proximity DIN 19234 NAMUR
Load current: < 1mA > 3mA
Voltage range: 5–25V DC
Hysteresis: 0.2 %
Temperature: –20°C to 85°C (–4°F to 185°F)

PROXIMITY SWITCHES
Type: SPDT
Rating: 5W/250mA/30V DC/125V DC
Breakdown voltage: 2000V DC
Contact resistance: 0.1 Ohm
Mechanical/Electrical life: >50000000 operations

4–20 mA TRANSMITTER
Supply: 11–28V DC
Output: 4–20 mA
Resolution: 0.1 %
Linearity full span: +/– 0.5 %
Output current limit: 30 mA DC
Load impedance: 800 Ohm @ 24V DC

* Switch rating limited to 100 mA/30V DC/42V AC for D3 units with connection board D3–AS351 R1

Connect a mA meter I to terminal 9 & 10.

Mounting instruction

PMV Positioner D3

Palmstirna International AB
Kronta Gatan 9 SE–171 84 SOLNA SWEDEN – Tel: +46(0)8 555 106 05 Fax: +46(0)8 555 106 01 – www.pmv.se

42
Disassembling PMV D3 Ex

Caution! Turn off the power and air supply before disassembling the PMV D3 EX

• Loosen the screws A and B and remove the caps C and D.

• Remove the inner display cover E by loosening the four screws F.

• Carefully remove the display board and loosen the connection H and I.

• Release the wide cable from the connector J on the terminal board.

• Loosen the three screws K.

• Remove the circuit board package L, consisting of terminal and processor board.

• Remove the four screws M and lift the block N.

• Pressure sensor board O, (option) can only be moved after the block N is removed.
Filter change

Turn off the compressed air supply before starting any work. Otherwise the filter can be blown out of the positioner by the air pressure, which can be dangerous.

- Remove the filter cap using a coin of suitable size.

Note! Do not use a screwdriver. The filter cap might crack and cause air leakage.

- When installing the filter/filter plug, start by installing the O-ring in the **bottom** of the cavity in the pneumatic block. Do *not* try to install it on the threaded filter plug. Insert filter in the filter plug, then thread the filter plug into pneumatic block.
9. Trouble shooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signal change to positioner does not affect actuator position.</td>
<td>• Check air supply pressure, air cleanliness, and connection between positioner and actuator.</td>
</tr>
<tr>
<td></td>
<td>• Out of service, in manual mode.</td>
</tr>
<tr>
<td></td>
<td>• Check input signal to positioner.</td>
</tr>
<tr>
<td></td>
<td>• Check mounting and connections of positioner and actuator.</td>
</tr>
<tr>
<td>Change in input signal to positioner makes actuator move to its end position.</td>
<td>• Check input signal.</td>
</tr>
<tr>
<td></td>
<td>• Check mounting and connections of positioner and actuator.</td>
</tr>
<tr>
<td>Inaccurate control.</td>
<td>• Perform Auto-calibration and check for any leaks.</td>
</tr>
<tr>
<td></td>
<td>• Uneven air supply pressure.</td>
</tr>
<tr>
<td></td>
<td>• Uneven input signal.</td>
</tr>
<tr>
<td></td>
<td>• Wrong size of actuator being used.</td>
</tr>
<tr>
<td></td>
<td>• High friction in actuator/valve package.</td>
</tr>
<tr>
<td></td>
<td>• Excess play in actuator/valve package.</td>
</tr>
<tr>
<td></td>
<td>• Excess play in mounting of positioner on actuator.</td>
</tr>
<tr>
<td></td>
<td>• Dirty/humid supply air.</td>
</tr>
<tr>
<td>Slow movements, unstable regulation.</td>
<td>• Implement auto-tuning.</td>
</tr>
<tr>
<td></td>
<td>• Increase the deadband (Tuning menu).</td>
</tr>
<tr>
<td></td>
<td>• Adjust Performance (Calibrate menu).</td>
</tr>
</tbody>
</table>
10. Technical data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation angle</td>
<td>min. 30° max 100°, option 270°</td>
</tr>
<tr>
<td>Stroke</td>
<td>5-130 mm (0.2” to 5.1”)</td>
</tr>
<tr>
<td>Input signal</td>
<td>4-20 mA DC</td>
</tr>
<tr>
<td>Air supply</td>
<td>2-7 bar (30-105 psi)</td>
</tr>
<tr>
<td></td>
<td>DIN/ISO 8573-1 3.2.3</td>
</tr>
<tr>
<td></td>
<td>Free from oil, water and moisture.</td>
</tr>
<tr>
<td>Air delivery</td>
<td>350 nl/min (13.8 scfm)</td>
</tr>
<tr>
<td>Air consumption</td>
<td><0.3 nl/min (0.01 scfm)</td>
</tr>
<tr>
<td>Air connections</td>
<td>¼” G or NPT</td>
</tr>
<tr>
<td>Cable entry</td>
<td>3 x M20x1.5 or ½” NPT (D3E 2x)</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>Screw terminals 2.5 mm² /AWG14</td>
</tr>
<tr>
<td>Linearity</td>
<td><1%</td>
</tr>
<tr>
<td>Repeatability</td>
<td><0.5%</td>
</tr>
<tr>
<td>Hysteresis</td>
<td><0.4%</td>
</tr>
<tr>
<td>Dead band</td>
<td>0.2-10% adjustable</td>
</tr>
<tr>
<td>Display</td>
<td>Graphic, view area 15 x 41mm (0.6 x 1.6”)</td>
</tr>
<tr>
<td>UI</td>
<td>5 push buttons</td>
</tr>
<tr>
<td>CE directives</td>
<td>93/68EEC, 89/336/EEC, 92 /31/EEC</td>
</tr>
<tr>
<td>EMC</td>
<td>EN 50 081-2, EN 50 082-2</td>
</tr>
<tr>
<td>Voltage drop, without HART</td>
<td>< 8.0 V => resistance 400 Ω</td>
</tr>
<tr>
<td>Voltage drop, with HART</td>
<td>< 9.4 V => resistance 470 Ω</td>
</tr>
<tr>
<td>Vibrations</td>
<td><1% up to 10 g at frequency 10-500 Hz</td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP66/NEMA 4X</td>
</tr>
<tr>
<td>Material</td>
<td>Die-cast Aluminum/Stainless Steel</td>
</tr>
<tr>
<td>Surface treatment</td>
<td>A2/A4 fasteners</td>
</tr>
<tr>
<td>Temperature range</td>
<td>Powder epoxy (Aluminum version only)</td>
</tr>
<tr>
<td></td>
<td>–30 to +80 °C / –22 to 176 °F</td>
</tr>
<tr>
<td></td>
<td>(-40 °C / – 40 °F for non-certified versions)</td>
</tr>
<tr>
<td>Weight</td>
<td>PMV D3X, 1.4 kg (3 lbs).</td>
</tr>
<tr>
<td></td>
<td>PMV D3E, 3 kg (6.6 lbs)</td>
</tr>
<tr>
<td></td>
<td>PMV D3E Stainless Steel, 6 kg (13.2 lbs)</td>
</tr>
<tr>
<td></td>
<td>Transistor Ri 1 KΩ</td>
</tr>
<tr>
<td>Alarm output</td>
<td>8-28 V DC</td>
</tr>
<tr>
<td>Alarm Supply Voltage</td>
<td>Any</td>
</tr>
<tr>
<td>Mounting position</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical switches

Type: SPDT
Size: Sub miniature
Rating: 3 A/125 VAC / 2 A/30 VDC
Temp. range: -30°C to 80°C (–22 °F to 180 °F)

NAMUR sensors
(NJ2-V3-N)

Type: Proximity DIN EN 60947-5-6:2000
Load current: 1 mA ≤ I ≤ 3 mA
Voltage range: 8 VDC
Hysteresis: 0.2 %
Temp. range: –25 °C to 85 °C (–13 °F to 185 °F)

Proximity switches

Type: SPDT
Rating: 0.4A @ 24VDC, Max 10W
Operating time: Max 1.0 ms
Max voltage: 200 VDC
Contact resistance: 0.2 Ω
Temp. range: -30 °C to 80 °C (–22 °F to 180 °F)

Slot NAMUR switches
(SJ2-S1N, SJ2-SN, SJ2-N)

Type: Proximity DIN EN 60947-5-6:2000
Load current: 1 mA ≤ I ≤ 3 mA
Voltage: 8 VDC
Hysteresis: 0.2 %
Temp: –25 °C to 85 °C (–13 °F to 185 °F)

4-20 mA transmitter

Supply: 11-28 VDC
Output: 4-20 mA
Resolution: 0.1 %
Linearity full span: +/-0.5 %
Output current limit: 30 mA DC
Load impedance: 800 Ω @ 24 VDC
11. Dimensions
Dimensions with optional gauge block installed
Dimensions explosion proof version
12. Spare parts
General Purpose and Intrinsically Safe housing

<table>
<thead>
<tr>
<th>No</th>
<th>Part no</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D3-SP6</td>
<td>Black cover incl. screws</td>
</tr>
<tr>
<td>2</td>
<td>D3-SP11</td>
<td>Internal cover incl. screws</td>
</tr>
<tr>
<td>3</td>
<td>P3-SP13</td>
<td>Cover plate incl. screw</td>
</tr>
<tr>
<td>4</td>
<td>3-SXX</td>
<td>Spindle adaptor (XX = 01, 02, 06, 26, 30, 36, 40, 41)</td>
</tr>
<tr>
<td>5</td>
<td>3-AS23</td>
<td>S23 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>5</td>
<td>3-AS39</td>
<td>S39 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>5</td>
<td>3-AS09</td>
<td>S09 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>6</td>
<td>D3-SP1</td>
<td>Block complete, incl. cable, rubber seal, filter plug</td>
</tr>
<tr>
<td>6</td>
<td>D3-SP1-PS</td>
<td>Block complete, Pressure sensors, incl. cable, seal, filter plug</td>
</tr>
<tr>
<td>6</td>
<td>D3-SP1-FF</td>
<td>Block complete, incl. cable, rubber seal, filter plug, Fail Freeze</td>
</tr>
<tr>
<td>6</td>
<td>D3-SP1-PFF</td>
<td>Block complete, Pressure sensors, incl. cable, rubber seal, filter plug, Fail Freeze</td>
</tr>
<tr>
<td>7</td>
<td>D3-SP9</td>
<td>Filter plug, incl. O-ring, filter</td>
</tr>
<tr>
<td>8</td>
<td>3-SP8B</td>
<td>Potentiometer complete incl. spring, holder, cable</td>
</tr>
<tr>
<td>9</td>
<td>3-SP37HR</td>
<td>PCB LCD Display assembly Hi Res type</td>
</tr>
<tr>
<td>10</td>
<td>D3-SP35P</td>
<td>PCBs (Terminal and processor) Profibus</td>
</tr>
<tr>
<td>10</td>
<td>3-SP80X</td>
<td>PCB Motherboard</td>
</tr>
<tr>
<td>10</td>
<td>3-SP80H</td>
<td>PCB Motherboard HART</td>
</tr>
<tr>
<td>11</td>
<td>3-SP84</td>
<td>Pressure sensor PCB assembly complete</td>
</tr>
<tr>
<td>12</td>
<td>3-SP48A</td>
<td>Indicator arrow assembly</td>
</tr>
<tr>
<td>13</td>
<td>D3-SP/SCREW</td>
<td>Kit, bag with screws</td>
</tr>
<tr>
<td>14</td>
<td>D3-SP/SEAL</td>
<td>Kit, bag with O-rings, seals</td>
</tr>
<tr>
<td>16</td>
<td>D3-SP34G</td>
<td>Gauge block G, complete</td>
</tr>
<tr>
<td>16</td>
<td>D3-SP34N</td>
<td>Gauge block NPT, complete</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81T</td>
<td>PCB Transmitter 4-20mA assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81M</td>
<td>PCB Transmitter and Mechanical switches, assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81N</td>
<td>PCB Transmitter and Namur sensors, assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81P</td>
<td>PCB Transmitter and Proximity switches, assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81N4</td>
<td>PCB Transmitter, slot type Namur sensors (P+F SJ2 S1N), assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81N5</td>
<td>PCB Transmitter, slot type Namur sensors (P+F SJ2 SN), assembly</td>
</tr>
<tr>
<td>17</td>
<td>3-AS81N6</td>
<td>PCB Transmitter, slot type Namur sensors (P+F SJ2N), assembly</td>
</tr>
<tr>
<td>18</td>
<td>D3-67</td>
<td>Silencer, Sintered brass</td>
</tr>
<tr>
<td></td>
<td>D3-SP/REPAIR KIT</td>
<td>Kit containing membranes and gasket for the air block and the O-ring for the filter plug cap.</td>
</tr>
</tbody>
</table>
Explosion Proof housing

<table>
<thead>
<tr>
<th>No</th>
<th>Part no</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D3E-SP4</td>
<td>Internal cover incl. screws</td>
</tr>
<tr>
<td>5</td>
<td>D3-SP1</td>
<td>See D3 page 53</td>
</tr>
<tr>
<td>5</td>
<td>D3-SP1-PS</td>
<td>See D3 page 53</td>
</tr>
<tr>
<td>7</td>
<td>3E-SP8</td>
<td>Potentiometer complete incl. spring, holder, cable</td>
</tr>
<tr>
<td>8</td>
<td>3-AS23</td>
<td>S23 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>8</td>
<td>3-AS39</td>
<td>S39 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>8</td>
<td>3-AS09</td>
<td>S09 Shaft complete incl. gearwheel, friction clutch, spring</td>
</tr>
<tr>
<td>9</td>
<td>3E-SP80X</td>
<td>PCB Mother board</td>
</tr>
<tr>
<td>9</td>
<td>3E-SP80XT</td>
<td>PCB Mother board, 4-20mA transmitter</td>
</tr>
<tr>
<td>9</td>
<td>3E-SP80H</td>
<td>PCB Mother board HART</td>
</tr>
<tr>
<td>9</td>
<td>3E-SP80HT</td>
<td>PCB Mother board, HART 4-20mA transmitter</td>
</tr>
<tr>
<td>10</td>
<td>3-SP84</td>
<td>See D3 page 53</td>
</tr>
<tr>
<td>11</td>
<td>3-SP37HR</td>
<td>See D3 page 53</td>
</tr>
<tr>
<td>12</td>
<td>3E-SP83</td>
<td>PCB Terminals</td>
</tr>
<tr>
<td>13</td>
<td>D3E-SP/SCREW</td>
<td>Kit, bag with screws</td>
</tr>
<tr>
<td>14</td>
<td>D3E-SP/SEAL</td>
<td>Kit, bag with O-rings, seals</td>
</tr>
</tbody>
</table>
Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the (D3 Digital Positioner User Instructions) instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

For more information about Flowserve Corporation, contact www.flowserve.com or call USA 1-800-225-6989.

© February 2015, Flowserve Corporation, Irving, Texas