USER INSTRUCTIONS

Limiterque® L120-190 through L120-2000

Installation
Operation
Maintenance

FCD LMENIM1203-01-A4 – 05/15
Contents

1 Introduction 5
 1.1 Purpose 5
 1.2 User Safety 5
2 Initial Inspection and Storage Instructions 6
 2.1 Product Identification 7
 2.2 Inspection and Recording 8
 2.3 Short-Term Storage (less than 1 year) 8
3 Actuator Weights 10
4 Installation Instructions 11
 4.1 Safety Precautions 11
 4.2 Safety Practices 12
 4.3 Actuator Preparation
 4.3.1 Mounting Base 13
 4.3.2 Stem Acceptance 13
 4.4 Double Torque Switch 13
 4.4.1 Setting Torque Switch 14
 4.4.2 Balancing Torque Switch 15
 4.4.3 Torque Switch Terminal Connections 15
 4.5 Geared Limit Switch – Rotor Type 16
 4.5.1 Setting Limit Switch 16
 4.5.2 Combination of Contacts 19
 4.6 Position Indication 19
 4.6.1 Local Position Indication 19
 4.6.2 Remote Position Indication 20
 4.6.3 Calibrating Position Transmitter PT20SD 20
5 Operation 21
 5.1 Electrical Start-Up 21
 5.1.1 Typical Wiring Diagram 22
 5.2 Manual Operation 22
 5.3 Motor Operation 23
 5.4 Torque and Travel Limiting 23
6 Maintenance 24
 6.1 Lubrication
 6.1.1 Lubrication Inspection 24
 6.1.2 Factory Lubricant 25
7 Disassembly and Reassembly 26
 7.1 L120-190, -420, and -800 26
 7.1.1 To Replace Stem Nut Only 26
 7.1.2 L120-190, 420, 800 Disassembly 27
 7.1.3 Reassembling Actuator Sizes L120-190, -420 and -800 28
 7.1.4 Gaskets 29
 7.2 L120-2000 38
 7.2.1 Drive 2 Disassembly (Thrust Housing Only) 38
 7.2.2 Drive 1 Disassembly (Torque Housing) 38
 7.2.3 Drive 1 (Torque Housing) Reassembly 40
 7.2.4 Drive 2 (Thrust Housing Only) Reassembly 42
8 Standard Wiring Diagrams 49
9 Troubleshooting 52
Figures

Figure 2.1 – L120-190 through 2000
Figure 4.1 – Double Torque Switch
Figure 4.2 – Setting Torque Switch
Figure 4.3 – Ring Tongue Terminal
Figure 4.4 – Geared Limit Switch
Figure 4.5 – Setting Geared Limit Switch
Figure 4.6 – Position Indicators
Figure 4.7 – Typical Connection for a 1000 ohm Potentiometer
Figure 7.1 – L120-190 and -420 Drive Sleeve Side View (Refer to Table 8.1 for parts list)
Figure 7.2 – L120-190 and -420 Worm Shaft Side View (Refer to Table 8.1 for parts list)
Figure 7.3 – L120-190 and -420 Top View (Refer to Table 8.1 for parts list)
Figure 7.4 – L120-800 Drive Sleeve Side View (Refer to Table 8.1 for parts list)
Figure 7.5 – L120-800 Worm Shaft Side View (Refer to Table 8.1 for parts list)
Figure 7.6 – L120-800 Top View (Refer to Table 8.1 for parts list)
Figure 7.7 – L120-2000 Drive Sleeve Side View (Torque Base) (Refer to Table 8.2 for parts list)
Figure 7.8 – L120-2000 Top View (Refer to Table 8.2 for parts list)
Figure 7.9 – L120-2000 Side View (Refer to Table 8.2 for parts list)
Figure 7.10 – L120-2000 Exploded View
Figure 8.1 – Wiring Diagram – No Controls
Figure 8.2 – Wiring Diagram – Integral Controls
Figure 8.3 – Wiring Diagram – NCU

Tables

Table 3.1 – Actuator Weights
Table 4.1 – Mounting Base Dimensions
Table 4.2 – Maximum Stem Acceptance
Table 4.3 – Terminal Dimensions By Cable Size
Table 4.4 – Maximum Drive Sleeve Turns
Table 6.1 – Lubricant Weights
Table 7.1 – L120-190, -420 and -800 typical parts list
Table 7.2 – L120-2000 typical parts list
1

Introduction

1.1 Purpose
This Installation, Operation, and Maintenance Manual explains how to install and maintain L120-190 through -2000 actuators. Information on installation, disassembly, reassembly, lubrication, and parts is provided.

1.2 User Safety
Safety notices in this manual detail precautions the user must take to reduce the risk of personal injury and damage to the equipment. The user must read and be familiar with these instructions before attempting installation, operation, or maintenance. Work to be performed on the actuator should be carried out by a qualified tradesman familiar with the operation and maintenance of electric actuators. Failure to observe these precautions could result in serious bodily injury or death, damage to the equipment, warranty void, or operational difficulty.

Safety notices are presented in this manual in three forms:

⚠️ WARNING: Refers to personal safety. Alerts the user to potential danger. Failure to follow warning notices could result in personal injury or death.

⚠️ CAUTION: Directs the user’s attention to general precautions that, if not followed, could result in personal injury and/or equipment damage.

NOTE: Highlights information critical to the user’s understanding of the actuator’s installation and operation.
Initial Inspection and Storage Instructions

L120 Series actuators operate without modification in any rising or non-rising stem application for linear-action valves.

The actuators meet rigid safety requirements and are available in weatherproof, explosionproof, and submersible configurations.

The actuators are compatible with a wide range of control options from stand-alone actuators with local control stations to open standards-based DDC-100 networks with up to 250 actuators.

The actuators are designed with integral control packages including plug-in interconnect boards that increase control functionality for stand-alone or networked actuators.

Torque overload protection is provided in both directions of travel.
WARNING: Read this Installation and Maintenance Manual carefully and completely before attempting to store the actuator. Be aware of the electrical hazards.

2.1 Product Identification

The actuator nameplate is located on the back of the actuator opposite the limit switch controls compartment. The nameplate contains the following information:

- Limitorque name
- Point of manufacture
- Actuator size
- Order number
- Serial number
- Customer tagging

The motor nameplate is located on the motor. The nameplate contains the following information:

- ID number
- Run torque
- RPM
- Full load amps
- Insulation class
- Space heater size
- Service Factor
- Cycles
- Ambient temperature
- Start torque
- Enclosure type
- Volts
- Locked rotor amps
- Duty
- Horsepower
- Phase
- Motor code
- Connection diagram
2.2 Inspection and Recording

Upon receipt of the actuator, inspect the condition of the equipment and record nameplate information.

1. Carefully remove actuator from shipping carton or skid. Thoroughly examine the equipment for any physical damage that may have occurred during shipment. If damaged, immediately report the damage to the transport company.

2. Record the actuator nameplate information for future reference, i.e., ordering parts, obtaining further information.

NOTE: The following are our recommended storage procedures to retain maximum product integrity during short-term storage. Failure to comply with recommended procedures will void the warranty. For longer-term storage, contact Limitorque for procedures and recommendations.

2.3 Short-Term Storage (less than 1 year)

Actuators are not weatherproof until properly installed on the valve or prepared for storage.

Store actuators in a clean, dry, protected warehouse away from excessive vibration and rapid temperature changes. If the actuators must be stored outside, they must be stored off the ground, high enough to prevent them from being immersed in water or buried by snow.
1. Position the actuator in storage with motor and switch compartment horizontal.
2. Connect the space heaters (if supplied) or place desiccant in the switch compartment.
3. Connect space heaters if actuator is to be stored in a damp place.
4. Replace all plastic caps or plugs with pipe plugs and ensure that all covers are tight.
5. If the actuator is mounted on a valve and the stem protrudes from the actuator, a suitable stem cover must be provided.
3 Actuator Weights

The approximate L120 actuator weights are provided below:

Table 3.1 – Actuator Weights

<table>
<thead>
<tr>
<th>Actuator Size</th>
<th>Control Types</th>
<th>Drive 1 Weight Side HW</th>
<th>Drive 2 Weight Side HW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb.</td>
<td>kg</td>
</tr>
<tr>
<td>L120-190</td>
<td>NCU<sup>3</sup></td>
<td>520</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>BIC<sup>3</sup></td>
<td>586</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>UEC/Clamshell<sup>3</sup></td>
<td>586</td>
<td>217</td>
</tr>
<tr>
<td>L120-420</td>
<td>NCU<sup>3</sup></td>
<td>1065</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>BIC<sup>3</sup></td>
<td>1130</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>UEC/Clamshell<sup>3</sup></td>
<td>1220</td>
<td>451</td>
</tr>
<tr>
<td>L120-800</td>
<td>NCU<sup>3</sup></td>
<td>1270<sup>1</sup></td>
<td>471<sup>1</sup></td>
</tr>
<tr>
<td>L120-2000</td>
<td>NCU<sup>3</sup></td>
<td>2500<sup>1</sup></td>
<td>925<sup>1</sup></td>
</tr>
</tbody>
</table>

Note 1: Torque Only
Note 2: Torque and Thrust
Note 3: NCU = No Controls Actuator
 BIC = Basic Integral Controls
 UEC = Universal Electronic Controller
4.1 Safety Precautions

WARNING: Read this Installation, Operation, and Maintenance Manual carefully and completely before attempting to install, operate, or troubleshoot the Limitorque actuator.

WARNING: Be aware of electrical hazards. Turn off incoming power before working on the actuator and before opening the switch compartment.

WARNING: Potential HIGH PRESSURE vessel — be aware of high-pressure hazards associated with the attached valve or other actuated device when installing or performing maintenance on the actuator. Do not remove the actuator mounting bolts from the valve or actuated device unless the valve or device stem is secured to prevent movement of the stem or there is no pressure in the line.

WARNING: For maintenance and/or disassembly of the actuator while installed on the valve, ensure that the actuator is not under thrust or torque load. If the valve must be left in service, the valve stem must be locked in such a way as to prevent any movement of the valve stem.

WARNING: Do not attempt to remove the spring cartridge cap, housing cover, or stem nut locknut from the actuator while the valve or actuated device is under load.

WARNING: Do not manually operate the actuator with devices other than the installed handwheel and declutch lever. Using force beyond the ratings of the actuator and/or using additive force devices such as cheater bars, wheel wrenches, pipe wrenches, or other devices on the actuator handwheel or declutch lever may cause serious personal injury and/or damage to the actuator and valve.

WARNING: Do not exceed any design limitations or make modifications to this equipment without first consulting Limitorque.
WARNING: Actuators equipped with electrical devices (motors, controls) requiring field wiring must be wired and checked for proper operation by a qualified tradesman.

WARNING: Use of the product must be suspended any time it fails to operate properly.

▲ **CAUTION:** Do not use oversized motor overload heaters. Instead, look for the cause of the overload.

▲ **CAUTION:** Do not operate the valve under motor operation without first setting or checking the limit switch setting and motor direction.

▲ **CAUTION:** Do not force the declutch lever into the motor operation position. The lever returns to this position automatically when the motor is energized.

▲ **CAUTION:** Do not depress the declutch lever during motor operation to stop valve travel.

▲ **CAUTION:** Do not use replacement parts that are not genuine Flowserve Limitorque parts, as serious personal injury and/or damage to the actuator and valve may result.

▲ **CAUTION:** Do not lift actuator/gearbox or actuator/valve combinations with only the eye bolts in the L120 actuator. These eye bolts are designed for lifting the L120 actuator only.

▲ **CAUTION:** Do not lift the actuator by handwheel.

4.2 Safety Practices

The following check points should be performed to maintain safe operation of the L120 actuator:

- Eye bolts are designed for lifting only the actuator and not associated gearboxes or valves.
- Mount motor on a horizontal plane, if possible. Preferably, keep the motor or limit switch compartment from hanging down. This prevents head of grease from being against motor or switch seals.
- Keep the switch compartment clean and dry.
- Keep the valve stem clean and lubricated.
- Set up periodic operating schedules for infrequently used valves.
- Verify that all actuator wiring is in accordance with the applicable wiring diagram.
- Carefully check for correct motor rotation direction. If the motor is driving the valve in the wrong direction, interchange any two leads on the three-phase motor or switch the armature leads on DC motors.
- Use a protective stem cover. Check valve stem travel and clearance before mounting covers on rising stem valves.
- Verify that a locking nut tightly secures the stem nut and that the top thread of the lock nut is crimped and staked in two places.
- For the DC motor, keep the armature clean and periodically check brushes for proper contact and wear.

4.3 Actuator Preparation

NOTE: Replace all molded plastic conduit and top protectors (installed for shipping purposes only) with pipe plugs when installation wiring is complete.
4.3.1 Mounting Base

The mounting hole sizes and quantities are as detailed in Table 4.1, below:

Table 4.1 – Mounting Base Dimensions

<table>
<thead>
<tr>
<th>Actuator Size</th>
<th>Mounting Holes Quantity</th>
<th>Tap Size ISO</th>
<th>ISO</th>
<th>Bolt Circle ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>L120-190</td>
<td>8</td>
<td>1/4–10 x 1.13</td>
<td>M20 x 2.5 x 32</td>
<td>11.73</td>
</tr>
<tr>
<td>L120-420</td>
<td>8</td>
<td>1/4–10 x 1.63</td>
<td>N/A</td>
<td>17.0</td>
</tr>
<tr>
<td>L120-800 (Torque Only)</td>
<td>8</td>
<td>1.25–7 x 2.0</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>L120-800 (Thrust Only)</td>
<td>8</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>L120-2000 (Torque Only)</td>
<td>16</td>
<td>1–8 x 2.0</td>
<td>N/A</td>
<td>23.5</td>
</tr>
<tr>
<td>L120-2000 (Thrust Only)</td>
<td>12</td>
<td>1 1/4–6 x 3.0</td>
<td>N/A</td>
<td>18.0</td>
</tr>
</tbody>
</table>

4.3.2 Stem Acceptance

The maximum stem acceptance is provided in Table 4.2, below:

Table 4.2 – Maximum Stem Acceptance

<table>
<thead>
<tr>
<th>Actuator size</th>
<th>Drive 2 Tapped</th>
<th>Drive 1 Bore</th>
<th>Drive 1 Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inch</td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>L120-190</td>
<td>3.5</td>
<td>89</td>
<td>2.875</td>
</tr>
<tr>
<td>L120-420</td>
<td>5</td>
<td>127</td>
<td>4.25</td>
</tr>
<tr>
<td>L120-800</td>
<td>5</td>
<td>127</td>
<td>7</td>
</tr>
<tr>
<td>L120-2000</td>
<td>6.25</td>
<td>159</td>
<td>8.00</td>
</tr>
</tbody>
</table>

NOTE: For complete mounting dimensions, see sales brochure LMENBR1200.

4.4 Double Torque Switch

The torque switch is designed to protect the actuator in open and close directions.

Figure 4.1 – Double Torque Switch

NOTE: See Caution and Note on following page.
CAUTION: Disconnect all incoming power before opening limit switch compartment or working on the torque switch.

- Do not use abrasive cloth to clean the contacts on the torque switch.
- Do not torque-seat 90° operation valves or run them against the stops. This may cause damage to the valve.

NOTE: If the actuator has “torqued out,” release torque buildup by operating the actuator manually in opposite direction ½ to 1 turn of the output drive sleeve.

NOTE: Torque switch contacts are rated 600 volts, in accordance with NEMA ICS-2.

4.4.1 Setting Torque Switch

The torque switch was set at the factory according to customer-supplied information regarding necessary torque or thrust output provided at the time of the order. However, if the torque switch is newly installed or the setting needs to be adjusted, follow the procedure below:

CAUTION: A maximum stop setting plate is provided on most actuators (Figure 4.2). Do not remove this plate. Do not exceed the setting indicated by this plate without contacting Limitorque.

- Installing or adjusting the torque switch with the operator in a “loaded” condition will result in a loss of torque protection.

Item letters correspond to Figure 4.2.

1. Place the L120 actuator in manual mode.
2. Release the load on the wormshaft spring pack. Put operator in manual mode and operate in opposite direction until switch is in neutral position.
3. For open and close directions, loosen Screw (A) and move Pointer (B) to desired position. A higher number indicates a high torque and/or thrust output.
4. Tighten Screw (A).
5. Operate the valve electrically to seat the valve and to ensure tight shutoff.

Figure 4.2 – Setting Torque Switch
4.4.2 Balancing Torque Switch

Item letters correspond to Figure 4.2.

1. Place the actuator in manual mode.

2. Remove the load from the wormshaft spring pack.

 NOTE: If the actuator torque switch has opened and de-energized the actuator, release the torque buildup by operating the actuator manually in opposite direction 1/2 to 1 turn.

3. Note the open and close torque switch settings prior to re-installing the torque switch.

4. Loosen Screws (A) and position both Pointers (B) at the #1 setting; tighten Screws (A).

5. Mount the torque switch and tighten the mounting screws. Verify that both contact pointers are touching the arms. The interface between the pointers and the arm is found beneath the torque switch dial. If the pointers and the arms are not in contact, the clearance on the open and close torque switches should be equal. If not equal, the torque switch needs to be balanced. (See Step 7.)

6. If the pointers and arms are in contact on both sides of the switch, manually rotate the torque switch dial clockwise and counter-clockwise to determine if there is equal backlash in both directions of rotation. If there is not equal backlash in both directions, the torque switch needs to be balanced. (See Step 7.)

7. Loosen both hex nuts.

8. Back out one setscrew and tighten the other setscrew until there is equal backlash in both directions of rotation of the dial, or equal clearance between the pointers and arms.

9. Tighten the hex nuts and return the torque switch to its original settings.

 CAUTION: The balancing screws should not be touched except during the balancing procedure.

The switch is now balanced and ready for the pointers to be returned to their original settings.

4.4.3 Torque Switch Terminal Connections

Wiring connections to the L120 geared limit switch, torque switch, and marathon terminal strips are to be made using ring-tongue terminals as shown below:

Figure 4.3 – Ring Tongue Terminal

See Table 4.3, next page
Table 4.3 – Terminal Dimensions By Cable Size

<table>
<thead>
<tr>
<th>AWG</th>
<th>Screw Hole</th>
<th>Insulation</th>
<th>Thomas & Betts P/N</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-16</td>
<td>#10</td>
<td>Vinyl</td>
<td>18RA-10</td>
<td>.97</td>
<td>.31</td>
<td>.27</td>
</tr>
<tr>
<td>18-14</td>
<td>#10</td>
<td>Vinyl</td>
<td>14RB-10</td>
<td>.97</td>
<td>.31</td>
<td>.27</td>
</tr>
<tr>
<td>12-10</td>
<td>#10</td>
<td>Vinyl</td>
<td>14RC-10</td>
<td>1.06</td>
<td>.31</td>
<td>.27</td>
</tr>
</tbody>
</table>

Terminals are to be crimped using Thomas & Betts crimping tool WT111M.

4.5 Geared Limit Switch – Rotor Type

▲ **CAUTION:** The geared limit switch is not preset at the factory and must be adjusted after the actuator has been mounted on associated equipment.

NOTE: Limit switch contacts are rated 600 volts, in accordance with NEMA ICS-2

- Disconnect all incoming power to the actuator prior to opening the limit switch compartment and adjusting the switch.
- Consult the relevant wiring diagram for limit switch contact development. All L120 actuators are supplied with 16-contact limit switches - four switches on each of the four rotors. Two rotors are used for end-of-travel indication. The remaining two rotors may be adjusted for any intermediate point-of-travel.
- Do not use abrasive cloth to clean the contacts on the limit switch.
- Do not attempt to repair gearing in the limit switch. Replace entire gear frame assembly if necessary.

4.5.1 Setting Limit Switch

The maximum number of drive sleeve turns available is a function of actuator size, worm gear ratio, and type of switch. See Table 4.4. The Intermediate Shaft shown in Figure 4.5 may take a considerable number of turns before rotor trip occurs.

▲ **WARNING:** Potential Explosion Hazard. Do not use an electric drill for setting the limit switch in an explosive environment.

▲ **CAUTION:** When setting the limit switch rotor segments (cams) using a variable speed electric drill, do not run drill at speeds higher than 200 RPM. Operating the drill at high speeds can damage the gearing within the limit switch.
Table 4.4 – Maximum Drive Sleeve Turns

<table>
<thead>
<tr>
<th>Actuator Size</th>
<th>W.G. Ratio</th>
<th>4-Gear</th>
<th>5-Gear</th>
<th>PIC or R/I (270)</th>
<th>RVDT(90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L120-190</td>
<td>13.3:1</td>
<td>3110</td>
<td>31100</td>
<td>13706</td>
<td>4569</td>
</tr>
<tr>
<td></td>
<td>33:1</td>
<td>1250</td>
<td>12500</td>
<td>5521</td>
<td>1837</td>
</tr>
<tr>
<td></td>
<td>60:1</td>
<td>690</td>
<td>6900</td>
<td>3037</td>
<td>1012</td>
</tr>
<tr>
<td></td>
<td>85:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L120-420</td>
<td>10.33:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>16:1</td>
<td>3300</td>
<td>33000</td>
<td>11405</td>
<td>3797</td>
</tr>
<tr>
<td></td>
<td>41:1</td>
<td>1280</td>
<td>12800</td>
<td>4445</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>57:1</td>
<td>910</td>
<td>9100</td>
<td>3195</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>80:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L120-800</td>
<td>12.67:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>19:1</td>
<td>2850</td>
<td>28500</td>
<td>9586</td>
<td>3195</td>
</tr>
<tr>
<td></td>
<td>49:1</td>
<td>1050</td>
<td>10500</td>
<td>3720</td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td>58:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>86:1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L120-2000</td>
<td>43:1</td>
<td>1210</td>
<td>12100</td>
<td>4234</td>
<td>1413</td>
</tr>
<tr>
<td></td>
<td>71:1</td>
<td>740</td>
<td>7400</td>
<td>2566</td>
<td>855</td>
</tr>
</tbody>
</table>

Figure 4.4 – Geared Limit Switch

Set the limit switch as shown on the following page. All item letters and piece numbers refer to Figure 4.5.
Figure 4.5 – Setting Geared Limit Switch

1. Open the Limit Switch Compartment Cover (piece #200-1 of Figure 7.3 for L120-190 and -420, Figure 7.6 for L120-800, and Figure 7.7 for L120-2000).
2. Put the actuator into manual operation. Use the handwheel to operate the valve in the “open” direction. While operating the valve, note the direction of rotation of the Intermediate Shaft corresponding to the rotor or rotors to be set.
3. When the valve is fully open, close it one turn of the handwheel to allow for coast of moving parts.
4. Push in the Clutch Screw and turn one-quarter turn. The rod will latch in this depressed position.
5. Refer to the applicable wiring diagram for contact development. The limit switch contact is closed when the rotor is engaged with the plunger. If the rotor to be set has not turned 90° to operate the plunger, turn the intermediate shaft in the same direction as noted in Step No. 2 until the rotor clearly trips the switches. This rotor is now set correctly.
6. If the intermediate position rotors 1 and 2 are also to be set at any desired position, repeat the setting operation in steps 1 through 5 above.
7. Before moving the valve, depress and turn the Clutch Screw counterclockwise one-quarter turn to the spring-released position. Insert a screwdriver into the intermediate shafts to ensure that they are loaded in position and will not rotate.

Table: Part Numbers

<table>
<thead>
<tr>
<th>Piece</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Gear Frame Assembly</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8-Switch Contact Block Assembly</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>Rotor Segment (short)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Rotor Shaft</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Machine Screw</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Flat Washer</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Lock Washer</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Hex Nut</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>Rotor Segments (long)</td>
</tr>
</tbody>
</table>

Unless otherwise noted part numbers refer to Figure 4.5.
NOTE: The cross-slotted shafts A, B, C, and D have been designed for use with a No. 2 Phillips screwdriver shank chucked into a variable speed reversible electrical drill. Do not run drill at speeds higher than 200 RPM (see previous CAUTION on page 16).

⚠️ CAUTION: Do not operate the valve when the Clutch Screw is in a fully depressed position. Loss of contact setting will occur and the setting rod will be damaged.

8. Operate the valve by handwheel to the fully “close” position; reverse direction by one turn of the handwheel to remove backlash from gear components.

9. Set the other rotors by following steps 1 through 7.

10. Secure the Limit Switch Compartment Cover (piece #200-1 of Figure 7.3 for L120-190 and -420, Figure 7.6 for L120-800, and Figure 7.7 for L120-2000).

NOTE: For actuators having captive bolts, pull-down torque must not exceed 30 ft lbs.

4.5.2 Combination of Contacts

Refer to Figure 4.5.

The rotor segments can be separated and rotated through 90° to give various combinations of normally open or normally closed contacts to each rotor.

1. Remove Nuts (piece #8) and Fillister Head Machine Screws (piece #5) for a total of two fasteners on each side of the switch.

2. Remove complete contact assembly from the back plate.

3. Rearrange cams on the camshaft to produce the required combination of contacts.

4. Replace contact assembly on back-plate (ensuring the registers fit correctly) and secure with the machine screws and nuts.

4.6 Position Indication

4.6.1 Local Position Indication

The local dial position indicator is factory-built per the application. The position indicator can only be adjusted when mounted on the valve.

Figure 4.6 – Position Indicators

NOTE: See the setting procedure on the following page.
To set the local position indicator:
1. Disconnect all incoming power and remove Limit Switch Compartment Cover (piece #200-1 of Figure 7.3 for L120-190, -420 and -800, and Figure 7.7 for L120-2000).
2. Using the handwheel place the valve in the fully “close” position.
3. Loosen the round head machine screw which holds the pointer in place; move the pointer to the “O” position, and re-tighten the screw.

The indicator is now set.

NOTE: The end-of-travel rotors of the geared limit switch activate “flip-flop” type indicators. This type of indicator will require no further setting after the geared limit switch has been adjusted.

4.6.2 Remote Position Indication

The remote position indicator is a Limitorque digital position indicator. This indicator is a digital LED display module that displays valve position in 1% increments. The readout accepts inputs from signals of 4-20 mA, 0-2 V, or a 1000 ohm feedback potentiometer (mounted on the MDPI). The readout is accurate to 1% +/- 1 digit.

4.6.3 Calibrating Position Transmitter PT20SD

1. Position the actuator to mid-travel value at 50% position.
2. Disconnect the potentiometer wiring harness from the PT20SD board and measure the resistance from each end connection to the center connection on the potentiometer.
3. Set the potentiometer to the correct resistance reading. Loosen the setscrew that retains the spur gear on the potentiometer shaft and rotate the shaft until a reading of 500 ohms is achieved.
4. Tighten the setscrew and reconnect the wiring harness to the PT20SD.
5. Run the actuator fully CLOSED.
6. Calibrate ZERO position by adjusting the zero potentiometer until a 4mA output signal is read at terminal +Ve and -Ve.
7. Run the actuator fully OPEN.
8. Calibrate SPAN position by adjusting the span potentiometer until a 20mA output signal is read at terminals +Ve and -Ve.
9. Repeat steps 5 through 8 and fine-tune as necessary.

![Figure 4.7 – Typical Connection for a 1000 ohm Potentiometer](image-url)
5 Operation

WARNING: See Sections 4.1 and 4.2 Safety Precautions and Safety Practices.

WARNING: Do not manually operate the actuator with devices other than the installed Handwheel and Declutch Lever. Using force beyond the ratings of the actuator and/or using additive force devices such as cheater bars, wheel wrenches, pipe wrenches or other devices on the actuator Handwheel or Declutch Lever may cause serious personal injury and/or damage to the actuator or valve.

CAUTION: Do not motor-operate the valve without first setting or checking the limit switch setting and motor direction. If the valve closes when the open button is pushed, the motor may need to be electrically reversed.

- Do not force the declutch lever into hand operation. If the clutch does not easily engage, rotate handwheel slowly while operating the declutch lever.
- Do not force the declutch lever into motor operation position. Lever returns to this position automatically when motor is energized.
- Do not run “plug” type valve against stop.
- Do not alternately start/stop the motor to open or close a valve that is too tight for normal operation.

5.1 Electrical Start-Up

1. Verify that the actuator has been correctly lubricated. This is particularly important if the actuator has been in long-term storage.

2. Verify that the geared limit switch has been correctly set per Section 4.5.1, Setting Limit Switch.

3. If the valve stem is not visible, remove the stem cover or handwheel cover plate to observe the output direction of the drive sleeve.

4. Engage manual operation and hand crank the valve well away from end-of-travel positions.

5. Turn on power supply and push the “open” button on the pushbutton station.
6. Check output rotation:
 • If phase rotation is correct, the valve should begin to open.
 • If valve begins to CLOSE, STOP IMMEDIATELY. Incorrect phase rotation will lead to serious
damage if the valve seats.

 NOTE: For actuators supplied with the UEC-3 electronics controls package, if the output rotation is
incorrect, select the opposite direction via the dipswitch setting.

7. Correct the phase rotation one of two ways:
 • switch any two of the three power leads for three-phase power, or
 • reverse the armature leads for DC power.

 The actuator should operate correctly and will be stopped at the end-of-travel positions by torque or
limit switch functions.

 Premature stopping may be caused by incorrect limit switch or torque switch settings or obstructions in
the valve.

5.1.1 Typical Wiring Diagram

Figures 8.1 through 8.4 are representations of typical applications and may not be applicable to
your specific actuator. Please refer to the wiring diagram supplied with your actuator to confirm the
actual equipment supplied. Check www.limitorque.com for the latest diagram revisions and/or related
diagrams.

5.2 Manual Operation

Piece numbers refer to Figures 7.1, 7.2, and 7.3 for L120-190 and -420, Figures 7.4, 7.5, and 7.6 for
L120-800, and Figures 7.7 - 7.10 for L120-2000.

The actuator has a handwheel for manual operation. The actuator may be manually operated any time
the motor is not engaged.

Manually operate as follows:
1. Move the Declutch Lever (piece #10, #11) in the direction of the arrow until it latches into place. Do
 not force the lever.
2. If the lever will not latch, rotate the Handwheel (piece #5) while turning the declutch lever and the
 lever will latch in place.

 When the declutch lever is turned, it rotates a Cam which causes the Clutch Fork (piece #42-1) to move
the Worm Shaft Clutch (piece #33) axially along the worm shaft against the force of a Clutch Spring
(piece #45, #46). This disengages the mating lugs on the Worm Shaft Gear (piece #32) and the clutch,
and engages the clutch with the Handwheel Gear (piece #17, #9). The Clutch Trippers (piece #34-A
and 34-B) maintain this position and latch onto the worm shaft gear. Turning the Handwheel (piece #5)
rotates the Handwheel Shaft (piece #18) and the Handwheel Pinion. The handwheel pinion then drives
the Handwheel Gear (piece #8, #9) which in turn drives the clutch. The clutch then drives the actuator in
the same manner as in motor operation.

 When the motor is energized, the motor pinion will turn the worm shaft gear. Tripper cams mounted
on the worm shaft gear cause the trippers to release the clutch. The Clutch Fork (piece #42-1) is then
forced, under spring pressure, to return the clutch to the motor operation position.
NOTE: The shift from manual operation to motor operation is automatic and does not require external positioning of the declutch shaft.

5.3 Motor Operation
The actuator is always available for motor operation whenever the motor is energized.

▲ CAUTION: Do not force the declutch lever into motor operation. Lever will automatically return to motor operation when the motor is energized.

Reset the travel limit switches prior to motor operation if the actuator has been dismantled or removed from the valve. Piece numbers refer to Figures 7.1, 7.2, and 7.3 for L120-190 and -420, and Figures 7.4, 7.5, and 7.6 for L120-800.

In motor operation, the Motor Pinion (piece #31) drives the Worm Shaft Gear (piece #32), which drives the Worm Shaft Clutch (piece #33) through the clutch lugs on both the worm shaft gear and the clutch. The Worm Shaft (piece #17) is driven by splines on the OD of the worm shaft and on the ID of the clutch. The worm shaft is splined to the Worm (piece #30-1) which drives the Worm Gear (piece #13).

Two lugs on the worm gear are engaged by matching grooves in the Drive Sleeve (piece #8). This arrangement provides the no-lost-motion mode of operation and allows the worm gear to turn the drive sleeve. The worm gear lugs may also be oriented outside the grooves to give the lost-motion or hammerblow effect. The Stem Nut (piece #12) is rotated by internal splines on the ID of the drive sleeve and external splines on the OD of the stem nut. This causes a threaded stem to translate in a threaded stem nut and a keyed shaft to rotate in a keyed stem nut. Thrust is absorbed by Bearings (piece #40, #41, #14, and #67) located at the top and bottom of the drive sleeve.

5.4 Torque and Travel Limiting
Unless otherwise stated, piece numbers refer to Figures 7.1, 7.2, and 7.3 for L120-190 and -420, and Figures 7.4, 7.5, and 7.6 for L120-800.

The Geared Limit Switch (piece #305 of Figure 7.6) is driven directly by the worm shaft gear through the limit switch pinion. Thus, the limit switch is directly connected to the output of the actuator and, once properly set, remains in step with the valve position regardless of the electric or manual operation of the actuator.

As the actuator increases torque, the worm and the Torque Spring Cartridge Assembly (composed of piece #’s 16-1 through 16-8) move axially along the worm shaft, compressing the disk spring packs. The torque spring assembly is calibrated such that a finite spring compression relates to a finite output torque. Axial worm movement causes movement of the bearing cartridge that is geared to the Torque Switch (piece #300). The torque switch is graduated and adjustable so it may be set to interrupt power to the motor at a predetermined output torque level.
6.1 Lubrication

The L120 series actuators have a totally sealed gear case, factory-lubricated with grease. The gear case can be mounted in any position.

▲ CAUTION: When the actuator is mounted in an upside-down orientation, the worm may not be completely immersed in lubricant. Check lubricant levels before operating the actuator.

No seal can remain absolutely tight at all times. Therefore, it is not unusual to find a very small amount of weeping around shaft seals—especially during long periods of idleness such as storage. Using grease minimizes this condition as much as possible. If a small amount of lubricant is weeping at start-up, remove it with a clean cloth. Once the equipment is operating on a regular basis, the weeping should stop.

6.1.1 Lubrication Inspection

Inspect Limitorque L120 series actuators for correct lubrication prior to operating—particularly following a long storage period.

Each application has its own effect on the actuator. The frequency of these inspections should be based on the application and the operating experience. The following lubrication inspection schedule is recommended until operating experience indicates otherwise.

For Gear Case, inspect lubrication every 18 months or 500 cycles, whichever occurs first.

During an inspection, consider the following:

• Quantity – Ensure there is enough lubricant so that the Worm and the Worm Gear are totally immersed in grease regardless of the position.

• Quality – Inspect lubricant for dirt, water or other foreign matter. If any one of these is found:
 1. Flush the actuator with a commercial degreaser/cleaner such as Exxon Varsol #18. This degreaser/cleaner is not corrosive and does not affect the seal materials.
 2. Repack the actuator with fresh lubricant, allowing room for grease thermal expansion.
• Consistency – Ensure the lubricant is fluid approximating a standard NLGI-0 grade consistency or less. Thickeners such as Amoco WAYTAC #31 oil may be added provided the volume of thinner does not exceed 20% of the total lubricant.

6.1.2 Factory Lubricant

Gear Case
• The L120-190 through 2000 is factory-lubricated with an NLGI Grade 00 lithium-base grease, suitable for temperatures from 0°F to 225°F (-18°C to 107°C).

Geared Limit Switch
• Mobil 28 (No Substitute)

Table 6.1 – Lubricant Weights

<table>
<thead>
<tr>
<th>Actuator Size</th>
<th>lb</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>L120-190</td>
<td>15</td>
<td>5.6</td>
</tr>
<tr>
<td>L120-420</td>
<td>50</td>
<td>18.7</td>
</tr>
<tr>
<td>L120-800 Drive 1</td>
<td>71</td>
<td>26.5</td>
</tr>
<tr>
<td>L120-800 Drive 2</td>
<td>75</td>
<td>28</td>
</tr>
<tr>
<td>L120-2000 Drive 1</td>
<td>65</td>
<td>24.3</td>
</tr>
<tr>
<td>L120-2000 Drive 2</td>
<td>72</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Minimum Lubricant Qualities Required
The standard lubricants used by Limitorque have been proven to be extremely reliable over years of service. Limitorque does not recommend a particular lubricant substitute for the standard lubricants; however, Limitorque does require the following lubricant qualities as a minimum.

▲ CAUTION: Do not mix lubricants of a different base chemical. Mixing lubricant bases may cause lubricant properties to be ineffective.

The lubricant must:
• Contain an “EP” additive.
• Be suitable for the temperature range intended.
• Be water and heat-resistant and non-separating.
• Not create more than 8% swell in Buna N or Viton.
• Not contain any grit, abrasive, or fillers.
• Comply with a slump-prefer NLGI-00 grade.
• Not be corrosive to steel gears, ball, or roller bearings.
• Have a dropping point above 316°F (158°C) for temperature ranges of 0°F to 225°F (-18°C to 107°C).
Disassembly and Reassembly

WARNING: See sections 4.1 and 4.2 Safety Precautions and Safety Practices prior to disassembly.

WARNING: Potential High Pressure Vessel. Before removing or disassembling your actuator, ensure that the valve or other actuated device is isolated and is not under pressure.

CAUTION: Turn off all power services before attempting to perform service on the actuator.

NOTE: Remove the actuator from the valve for complex work. Minor work, such as replacing geared limit switch, torque switch or motor, may be readily performed while the actuator is still on the valve.

7.1 L120-190, -420, and -800

WARNING: See sections 4.1 and 4.2 Safety Precautions and Safety Practices prior to disassembly.

NOTE: The disassembly of the actuator L120–190 will be used as a general example. Always refer to the parts drawing when disassembling. Be certain to keep all parts clean and free from dirt after disassembly.

NOTE: Unless otherwise noted, piece numbers refer to Figures 7.1, 7.2 and 7.3 for L120-190 and -420, and Figures 7.4, 7.5 and 7.6 for L120-800.

7.1.1 To Replace Stem Nut Only

WARNING: Do not remove Locknut (piece #39) with actuator under load or with valve under pressure. See Warning on Step No. 11 of Section 7.1.2 L120-190, 420, 800 Disassembly.

NOTE: If the valve must be left in service while the stem nut is replaced, the valve stem must be locked in such a way as to prevent any movement of the valve stem.
Piece numbers refer to Figures 7.1, 7.2 and 7.3 for L120-190 and -420, and Figures 7.4, 7.5 and 876 for L120-800.

If the Stem Nut (piece #12) is to be removed from the assembled actuator, remove the Lock Nut (piece #39) and lift out top of nut.

1. The Lock Nut (piece #39) is staked in two places. Locate the stakes and spot with a drill.
2. Clean all metal particles and remove.
3. If the actuator is mounted on a valve having a threaded stem, and removal of the stem nut is required, perform Step No.1 and rotate the handwheel to close the valve.
4. The stem nut will rise up the threaded valve stem. When the stem nut splines are free from the drive sleeve, rotate the stem nut by hand the remaining length of the valve stem.
5. Replace if necessary.
6. Install the new stem nut with the lock nut.
7. Stake the top threads of the lock nut in two places.

7.1.2 L120-190, 420, 800 Disassembly

Piece numbers refer to Figures 7.1, 7.2 and 7.3 for L120-190 and -420, and Figures 7.4, 7.5 and 876 for L120-800.

1. Turn off power to the actuator.
2. Open or remove electrical Compartment Cover (piece #200-1).
3. Disconnect all electrical leads from the Torque Switch (piece #300) and Geared Limit Switch (piece #305). Ensure that all leads and terminals are clearly marked to facilitate reassembly.
4. Remove two screws holding limit switch and one holding torque switch. Remove both items.
5. Remove four bolts holding Motor (piece #124) and three bolts holding conduit Nipple Flange (piece #26). Remove motor, drawing motor leads through the conduit opening.
6. Replace Motor Pinion (piece #31). The motor pinion is keyed to the motor shaft and held there with a setscrew and lockwire to retain the pinion in its proper position. The motor pinion should be shouldered on the motor shaft.
7. Remove Handwheel (piece #5) by loosening setscrew. Handwheel can then be pulled from Handwheel Shaft (piece #18).
8. Remove Declutch Lever Subassembly (piece #11) by removing Extension Spring (piece #48), Retaining Ring (piece #53-4), Declutch Link (piece #10), and two hex head cap screws holding the subassembly in place. Remove subassembly.
9. Remove Spring Cartridge Cap (piece #4).
10. Remove Worm and Torque Spring Subassembly (piece #13, #30-1) completely. Temporarily replace the handwheel and then rotate in the close direction to cause the worm to screw out of engagement with worm gear and cause the torque spring cartridge to emerge from Housing (piece #1). See Step No. 21 to further disassemble the cartridge.
11. Remove Housing Cover (piece #3).
WARNING: Do not remove if a thrust load is on the actuator or if the valve is under pressure and not fully open, as personal injury may result.

12. Lift complete drive sleeve assembly from actuator housing. The drive sleeve assembly consists of Lock Nut (piece #39), Stem Nut (piece #12), Drive Sleeve (piece #8), Upper Thrust Bearings (piece #40, #67), Worm Gear (piece #13), Worm Gear Spacer (piece #36) and Lower Thrust Bearing (piece #14). The drive sleeve assembly may be further dismantled if required by pressing off Lower Drive Sleeve Bearing (piece #41).

13. Remove Retaining Ring (piece #53-1), Split Ring Retainer (piece #27) and Conduit Nipple (piece #26). Pull the Worm Shaft Clutch Gear (piece #32) from the worm shaft.

14. Spread clutch trippers with a tool to shift actuator into motor operation.

WARNING: Do not use hands as spring forces could result in personal injury.

15. Remove bolts holding Declutch Housing (piece #2) to Housing (piece #1). Remove clutch housing, Trippers (piece #34-A and #34-B), and Clutch Fork Assembly (piece #42-1). Worm Shaft Clutch (piece #33) will slide off worm shaft when removing clutch housing.

16. Slide Clutch Spring (piece #45) off worm shaft toward motor end.

17. Remove Elastic Stop Nut (piece #16-7). Pull Handwheel Spur Gear (piece #9) that is keyed to Shaft (piece #17).

18. Remove bolts holding WS Bearing Cap (piece #7) and slide cap off worm shaft. Remove Handwheel Clutch Pinion (piece #20) from bearing cap by removing Retaining Ring (piece #53-3). Be careful not to lose Handwheel Pinion Spring (piece #47) and Spring Ring (piece #49).

19. Remove Handwheel shaft: tap on the motor end of the shaft to free Ball Bearing (piece #52-1) from housing. Handwheel shaft will break free from Ball Bearing (piece #52-6). Remove handwheel shaft from housing.

20. Withdraw handwheel shaft from handwheel end of housing.

21. To disassemble worm assembly further (removed in Step No. 10), remove Elastic Stop Nut (piece #16-7), noting the number of turns to remove.

22. Remove Thrust Washers (piece #16-2), Limit Sleeve (piece #16-5), and Belleville Disc Springs (piece #16-3 and #16-4). Note the orientation of the discs for reassembly later.

23. Remove Retaining Ring (piece #53-4).

24. The Bearing Cartridge (piece #16-1) and Worm Subassembly (piece #30-1) can now be withdrawn.

25. Remove the Ball Bearing (piece #52-7), locate setscrew in bearing locknut and remove setscrew and Locknut (piece #44-1).

7.1.3 Reassembling Actuator Sizes L120-190, -420 and -800

1. Follow the disassembly instruction for Actuator Sizes 190, 420, and 800 in the reverse order and follow the gasketing instructions below.

2. Stack Belleville disc, thrust washers, and spacers that were removed in the exact order as they were removed.

3. Re-install Elastic Stop Nut (piece #16-7) with the same number of turns used to remove.
4. For the Worm Shaft Clutch (piece #33), install the clutch with smaller set of lugs first to engage with lugs on Handwheel Clutch Pinion (piece #20).

5. For worm, rotate Worm Shaft Clutch (piece #33) to engage splines on worm shaft. Place actuator in manual operation, replace Declutch Lever Subassembly (piece #11), and handwheel temporarily; rotate handwheel in opposite direction used to remove worm.

6. When re-installing the Motor Pinion (piece #31), ensure it fits tightly on the motor shaft (preferably a light press fit).

7.1.4 Gaskets

All gaskets, except the housing cover gaskets, are \(\frac{1}{32} \)" thick Anchorite. The housing cover gaskets vary in thickness. Determine the correct size as follows:

1. Clean both housing cover and main housing gasketed surface.

2. Install actuator drive sleeve assembly complete with bearings.

3. Install housing cover and measure the gap between the housing cover and the main housing.

4. Add 10% to the measurement. Use the closest nominal gasket thickness or combination available.
Figure 7.1 – L120-190 and -420 Drive Sleeve Side View (Refer to Table 7.1 for parts list)
Figure 7.2 – L120-190 and 420 Worm Shaft Side View (Refer to Table 7.1 for parts list)

Drawing 01-608-0116-4
Figure 7.3 – L120-190 and -420 Top View (Refer to Table 7.1 for parts list)
Figure 7.4 – L120-800 Drive Sleeve Side View (Refer to Table 7.1 for parts list)

Drawing 01-608-0138-4
Figure 7.5 – L120-800 Worm Shaft Side View (Refer to Table 7.1 for parts list)
Figure 7.6 – L120-800 Top View (Refer to Table 7.1 for parts list)
Table 7.1 – L120-190, -420 and -800 typical parts list

<table>
<thead>
<tr>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
<td>38</td>
<td>1</td>
<td>Seal Retainer Plate</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Declutch Housing</td>
<td>39</td>
<td>1</td>
<td>Lock Nut</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Housing Cover</td>
<td>40</td>
<td>1</td>
<td>Upper Thrust Bearing Cup</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Spring Cartridge Cap</td>
<td>41</td>
<td>1</td>
<td>Lower Thrust Bearing Cone</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Handwheel</td>
<td>42-1</td>
<td>1</td>
<td>Declutch Fork</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Limit Switch Compartment Cover (L120-800 only)</td>
<td>42-4</td>
<td>2</td>
<td>Fork Roller (L120-420, 800)</td>
</tr>
<tr>
<td>6-1</td>
<td>1</td>
<td>Hex Head Cap Screw (L120-800 only)</td>
<td>42-5</td>
<td>2</td>
<td>Fork Roller Pin (L120-420, 800)</td>
</tr>
<tr>
<td>6-2</td>
<td>1</td>
<td>Lockwasher (L120-800 only)</td>
<td>43</td>
<td>1</td>
<td>Declutch Lever Plate</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Worm Shaft Bearing Cap (L120-420, 800)</td>
<td>44-1</td>
<td>1</td>
<td>Lock Nut</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Drive Sleeve (2 pc)</td>
<td>44-2</td>
<td>1</td>
<td>Set Screw</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Handwheel Spur Gear</td>
<td>45</td>
<td>1</td>
<td>Clutch Spring</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Declutch Link</td>
<td>46</td>
<td>1</td>
<td>Handwheel Shaft Spacer</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Declutch Lever</td>
<td>47</td>
<td>1</td>
<td>Handwheel Pinion Spring</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Stem Nut</td>
<td>48</td>
<td>1</td>
<td>Extension Spring</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Worm Gear</td>
<td>49</td>
<td>1</td>
<td>Spring Ring</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Lower Thrust Bearing Cup</td>
<td>50</td>
<td>1</td>
<td>Declutch Lever Nameplate</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Fork Pivot Pin (L120-420, 800)</td>
<td>51</td>
<td>1</td>
<td>Worm Shaft Gear Cam Pin</td>
</tr>
<tr>
<td>16-1</td>
<td>1</td>
<td>Bearing Cartridge</td>
<td>52-1</td>
<td>1</td>
<td>Ball Bearing (L120-190)</td>
</tr>
<tr>
<td>16-2</td>
<td>various</td>
<td>Thrust Washer</td>
<td>52-1</td>
<td>1</td>
<td>Bushing (L120-420, 800)</td>
</tr>
<tr>
<td>16-3</td>
<td>various</td>
<td>Belleville Spring</td>
<td>52-3</td>
<td>2</td>
<td>Motor Clutch Gear Bushing</td>
</tr>
<tr>
<td>16-4</td>
<td>various</td>
<td>Belleville Spring</td>
<td>52-6</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>16-5</td>
<td>1</td>
<td>Torque Limit Sleeve</td>
<td>52-7</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>16-6</td>
<td>1</td>
<td>Torque Limit Sleeve</td>
<td>52-8</td>
<td>2</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>16-7</td>
<td>1</td>
<td>Elastic Stop Nut (L120-190 only)</td>
<td>53-1</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>16-8</td>
<td>1</td>
<td>Bearing Cartridge Stem (L120-420, 800)</td>
<td>53-2</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Worm Shaft</td>
<td>53-3</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Handwheel Shaft</td>
<td>53-4</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Declutch Shaft</td>
<td>53-5</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Handwheel Clutch Pinion</td>
<td>53-7</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Split Ring</td>
<td>53-8</td>
<td>1</td>
<td>Retaining Ring (L120-190 only)</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>Motor Conduit Nipple</td>
<td>54-1</td>
<td>2</td>
<td>Declutch Housing Gasket</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>Split Ring Retainer</td>
<td>54-2</td>
<td>1</td>
<td>Spring Cartridge Cap Gasket</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>Lock Nut</td>
<td>54-3</td>
<td>1</td>
<td>Quad Ring</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Worm Bushing</td>
<td>54-4</td>
<td>1</td>
<td>Quad Ring</td>
</tr>
<tr>
<td>30-1</td>
<td>1</td>
<td>Worm</td>
<td>54-5</td>
<td>1</td>
<td>O-Ring</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Motor Pinion</td>
<td>54-6</td>
<td>1</td>
<td>O-Ring (L120-190)</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>Worm Shaft Gear</td>
<td>54-6</td>
<td>1</td>
<td>Oil Seal (L120-420, 800)</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>Worm Shaft Clutch</td>
<td>54-7</td>
<td>1</td>
<td>O-Ring (L120-190)</td>
</tr>
<tr>
<td>34-A</td>
<td>1</td>
<td>Clutch Tripper #1</td>
<td>54-7</td>
<td>1</td>
<td>Gasket (L120-420, 800)</td>
</tr>
<tr>
<td>34-B</td>
<td>1</td>
<td>Clutch Tripper #2</td>
<td>54-8</td>
<td>1</td>
<td>O-Ring</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>Spring Spacer</td>
<td>54-9</td>
<td>1</td>
<td>Chekseal</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Worm Gear Spacer</td>
<td>55-1</td>
<td>12</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>Housing Cover Shim Set</td>
<td>55-2</td>
<td>12</td>
<td>Lockwasher</td>
</tr>
</tbody>
</table>
Table 7.1 Continued – L120-190, -420 and -800 typical parts list

<table>
<thead>
<tr>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-3</td>
<td>7</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>55-4</td>
<td>various</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>55-5</td>
<td>2</td>
<td>Socket Head Cap Screw</td>
</tr>
<tr>
<td>55-6</td>
<td>various</td>
<td>Hex Head Cap Screw (L120-190, 420)</td>
</tr>
<tr>
<td>55-7</td>
<td>various</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>55-8</td>
<td>2</td>
<td>Drive Screw</td>
</tr>
<tr>
<td>55-9</td>
<td>4</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>55-10</td>
<td>4</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>55-11</td>
<td>2</td>
<td>Lockwasher (L120-190)</td>
</tr>
<tr>
<td>56-2</td>
<td>various</td>
<td>Pipe Plug</td>
</tr>
<tr>
<td>56-3</td>
<td>1</td>
<td>Grease Fitting</td>
</tr>
<tr>
<td>56-5</td>
<td>1</td>
<td>Clevis Pin</td>
</tr>
<tr>
<td>56-6</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>56-7</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>56-8</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>56-9</td>
<td>1</td>
<td>Socket Head Set Screw</td>
</tr>
<tr>
<td>56-10</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>56-11</td>
<td>1</td>
<td>Flat Washer (L120-190)</td>
</tr>
<tr>
<td>56-11</td>
<td>1</td>
<td>Socket Head Set Screw (L120-420, 800)</td>
</tr>
<tr>
<td>56-12</td>
<td>1</td>
<td>Flat Washer</td>
</tr>
<tr>
<td>56-13</td>
<td>1</td>
<td>Socket Head Set Screw</td>
</tr>
<tr>
<td>56-14</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>56-15</td>
<td>various</td>
<td>Socket Head Cap Screw</td>
</tr>
<tr>
<td>56-16</td>
<td>various</td>
<td>Socket Head Cap Screw</td>
</tr>
<tr>
<td>56-19</td>
<td>1</td>
<td>Socket Head Set Screw</td>
</tr>
<tr>
<td>56-20</td>
<td>4</td>
<td>Socket Head Set Screw</td>
</tr>
<tr>
<td>56-21</td>
<td>4</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>56-23</td>
<td>1</td>
<td>Pipe Plug</td>
</tr>
<tr>
<td>56-25</td>
<td>2</td>
<td>Dowel Pin (L120-420, 800)</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>O-Ring Spacer (L120-190)</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>Tripper Spring</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>Terminal Bracket</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>Terminal Strip</td>
</tr>
<tr>
<td>61-1</td>
<td>2</td>
<td>Kulka Insulator Strip</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>Fil HD Mach Screw</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>65</td>
<td>8</td>
<td>RD HD Mach Screw</td>
</tr>
<tr>
<td>66</td>
<td>8</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>Upper Thrust Bearing Cone</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
<td>Fork Spacer (L120-420, 800)</td>
</tr>
<tr>
<td>69</td>
<td>1</td>
<td>Handwheel Bearing Cap (L120-420, 800)</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>Hinge</td>
</tr>
<tr>
<td>70-1</td>
<td>various</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>70-2</td>
<td>various</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>Hinge Standard Compartment</td>
</tr>
<tr>
<td>124</td>
<td>1</td>
<td>Motor</td>
</tr>
<tr>
<td>182</td>
<td>1</td>
<td>Handwheel Spinner Kit</td>
</tr>
<tr>
<td>200-1</td>
<td>1</td>
<td>Limit Switch Compartment Cover (L120-190, 420)</td>
</tr>
<tr>
<td>200-2</td>
<td>various</td>
<td>Hex Head Cap Screw (L120-190, 420)</td>
</tr>
<tr>
<td>200-3</td>
<td>various</td>
<td>Lockwasher (L120-190, 420)</td>
</tr>
<tr>
<td>204</td>
<td>1</td>
<td>M.D.P.I. Sight Glass</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>Torque Switch</td>
</tr>
<tr>
<td>305</td>
<td>1</td>
<td>Geared Limit Switch</td>
</tr>
<tr>
<td>310</td>
<td>1</td>
<td>Mechanical Dial Position Indicator</td>
</tr>
</tbody>
</table>
7.2 L120-2000

WARNING: See sections 4.1 and 4.2 Safety Precautions and Safety Practices.

NOTE: The L120-2000 Drive 2 is a thrust-type actuator consisting of an L120-2000 Drive 1 torque-type actuator mounted on a thrust bearing assembly. For torque-only actuators see Section 8.2.2, Drive 1 Disassembly (Torque Housing).

NOTE: Piece numbers refer to Figures 8.7 - 8.10.

7.2.1 Drive 2 Disassembly (Thrust Housing Only)

WARNING: Before proceeding, ensure that the actuator is not under load and that the valve is not under pressure. If so, the valve must be in fully open position.

Remove Drive Sleeve Locknut (piece #130):

1. Rotate handwheel to close valve, causing the Stem Nut (piece #127) to rise up threaded valve stem until the stem nut splines are free of Drive Sleeve (piece #126).
2. Rotate stem nut by hand for the remaining length of the valve stem and remove.

Remove Thrust Adapter (piece #125):

NOTE: If disassembly of thrust adapter assembly is not required, continue to Section 8.2.2, Drive 1 (Torque Actuator), Step No. 1.

1. Remove Seal Retainer Plate (piece #129) and Oil Seal (piece #54-6).
2. Loosen setscrew and remove Thrust Bearing Cartridge (piece #128) from the Thrust Adapter Housing (piece #125).
3. Remove Upper Bearing Roller Assembly (piece #131).
4. Lift Thrust Drive Sleeve (piece #126) out of Thrust Adapter Housing (piece #125).
5. Remove Lower Bearing Roller Assembly (piece #131).

7.2.2 Drive 1 Disassembly (Torque Housing)

1. Remove Limit Switch Compartment (piece #200-1).
2. Disconnect motor leads, Torque Switch (piece #301) leads, and Geared Limit Switch (piece #305) leads.

NOTE: Ensure leads are labeled for reassembly.

3. Remove screws holding Limit Switch and holding Torque Switch. Remove both items.
4. Remove bolts holding Motor.
5. Remove Motor Adapter (piece #22) and Motor Adapter Gasket (piece #105). Remove motor gear shims from the motor adapter bearing bores and store in a safe place.
6. Remove Intermediate Pinion (piece #32-1) and the Drive Shaft Gear (piece #32-2).
7. Remove torque switch and geared limit switch.
8. Using lifting eyebolts, remove Housing Cover (piece #3), Drive Sleeve (piece #8), and Worm Gear (piece #13).

9. Remove Handwheel Washer (piece #88). Pull off Handwheel (piece #5) and Handwheel Clutch (piece #83) from Handwheel Shaft (piece #18).

10. Remove Worm Shaft End Cap (piece #4) and Declutch Housing Cover (piece #86).

11. Remove Declutch Assembly:
 A. Remove Declutch Lever Stop (piece #93), Tripper Spring (piece #58), Clutch Trippers (piece #34-A and #34-B) and Roll Pin (piece #19-7).
 B. Loosen setscrews on Declutch Lever (piece #11) and Hallowell Collar (piece #56-8). Remove declutch lever, Declutch Shaft and Cap (piece #95), and slide Declutch Shaft (piece #19-1) out through bottom of actuator.
 C. Remove Declutch Lever (piece #11), and other Declutch Shaft-Mounted Components (piece #19-2, #91, #92, and #56-8).
 D. Remove Handwheel Shaft and Pinion (piece #18).

12. Remove Drive Shaft (piece #77) and Flexible Jaw Clutch (piece #82-1) as integral assembly. Remove Gear Clutch Spacer (piece #78), Sliding Gear Clutch (piece #33), and Clutch Compression Spring (piece #46).

13. Remove Splined Insert (piece #87) using jack screws. Remove Spirolox Ring (piece #53-3) and Handwheel Gear (piece #9).

14. Remove Gear Mounting Bracket (piece #84) using jack screws, Bearing (piece #52-7), and Bearing Adapter (piece #79).

15. Pull Hollow Drive Shaft (piece #17) toward declutch end and remove Spirolox Ring (piece #53-8).

16. Remove Declutch Housing (piece #2).

17. Remove Hollow Drive Shaft (piece #17):
 A. Push hollow drive shaft toward motor end. Loosen setscrew and remove Bearing Locknut (piece #80-1) – hold hollow drive shaft using adjustable spanner on splines.
 B. Remove Bearing (piece #52 -8) by pushing hollow drive shaft toward declutch end.
 C. Remove Gear Limit Thread Collar (piece #76) and key.
 D. Remove hollow drive shaft from declutch end of actuator.

18. Loosen setscrew in Cartridge Stem Locking Nut (piece #16-10) and replace Declutch Housing (piece #2) with two screws to compress torque spring.

19. Remove Locking Nut (piece #16-10).

 ▲ CAUTION: Declutch Housing is under spring load.

20. Remove Declutch Housing (piece #2):
 A. Pull Bearing Cartridge Stem (piece #16-8) out partially.
 B. Remove Thrust Washers (piece #16-2), Torque Limit Sleeve (piece #16-5) and Springs (piece #16-3).
21. Remove bearing cartridge/worm assembly from actuator. To disassemble further:
 A. Loosen two setscrews on Bearing Cartridge Cap (piece #16-1), and unscrew Bearing Cartridge Stem (piece #16-8).
 B. Slide bearing cartridge cap off toward worm threads.
 C. Loosen setscrew and remove Bearing Locknut (piece #44-1).
 D. Press off two Bearings (piece #73).

7.2.3 Drive 1 (Torque Housing) Reassembly

1. Press two Bearings (piece #73) onto worm. It may be necessary to apply heat to the bearings. Ensure that the bearing spacer is installed.
2. Install Bearing Lock Nut (piece #44-1) and tighten screw.
3. Apply head to Bearing Cartridge Cap (piece #16-1) and drop on bearing from worm end. Ensure that cartridge cap seats on bearing.
4. Install bearing cartridge/worm assembly in housing.
5. Replace the following in the order listed:
 A. Thrust Washer (piece #16-2)
 B. Belleville Springs (piece #16-3)
 C. Torque Limit Sleeve (piece #16-5)
 D. Thrust Washer (piece #16-2)
 Ensure flat side of thrust washer is against springs.
6. Thread Cartridge Stem Nut (piece #16-10) onto Bearing Cartridge Stem (piece #16-8) by hand.
7. Slide bearing cartridge/worm assembly into housing.
8. Install Hollow Drive Shaft (piece #17).
9. Install Gear Limit Threaded Collar (piece #76) and key on motor end of hollow drive shaft with threaded end toward worm.
10. Slide Bearing (piece #52-8) onto shaft.
11. Thread Bearing Locknut (piece #81-1) on shaft and tighten setscrew. Hold Drive Shaft using adjustable spanner on splines.
12. Re-install motor as follows:
 A. Push Hollow Drive Shaft (piece #17) to declutch and install Bearing Spacer (piece #101).
 B. Install motor gearing by meshing Drive Shaft Gear (piece #32-2) and Intermediate Pinion (piece #32-1) and pressing combined assembly into housing bores.
 C. Install motor gear shims in motor adapter bearing bores and install Motor Adapter Gasket (piece #105) and Motor Adapter (piece #22). Tap adapter to ensure bearings seat.
 D. Check intermediate pinion and shaft for proper shims.
 E. Install motor.
13. Re-install declutch housing as follows:
 A. Install Spirolox Ring (piece #53-8) on Hollow Drive Shaft (piece #17).
 B. Install Declutch Housing (piece #2) using two screws only to compress Belleville Spring Set (piece #16-3).
 C. Using two screws, thread Cartridge Stem Nut (piece #16-10) on Bearing Cartridge Stem (piece #16-8) until nut is snug against Thrust Washer (piece #16-2).
 D. Re-install declutch housing.
15. Install Handwheel Gear (piece #9) and Spirolox Ring (piece #53-8).
16. Install Splined Insert (piece #87), Spring Washer (piece #49) and Clutch Compression Spring (piece #46).
17. Install Sliding Gear Clutch (piece #33) onto Hollow Drive Shaft Splines (piece #17).
18. Install Drive Shaft (piece #77), ensuring that Gear Clutch Spacer (piece #78) is in place. Align splines on drive shaft and drive shaft gear and push drive shaft into actuator from declutch end.
19. Mount Bearing (piece #52-6 and #52-1) on Handwheel Shaft and Pinion (piece #18) and install assembly into actuator.
20. Install Declutch Shaft (piece #19-1) and Torsion Spring (piece #94) into Declutch Cap (piece #95).
21. Install declutch shaft assembly through bottom of Declutch Housing (piece #2). Declutch shaft assembly consists of:
 - Declutch Shaft
 - Declutch Shaft Washers (piece #91, 3 pieces)
 - Torsion Spring
 - Declutch Fork (piece #42-1)
 - Declutch Cap
 - Declutch Spacer (piece #92)
 - Declutch Lever Drum (piece #19-3)
 - Hallowell Collar (piece #56-8)
 - Declutch Arm (piece #19-2)

 NOTE: Declutch shaft must be installed with key seat facing right side of the declutch housing when viewed from declutch end of actuator.
22. Fasten declutch cap.
23. Insert Roll Pin (piece #19-7) through declutch arm and shaft.
24. Ensure that declutch shaft bears against declutch cap, push collar against top of housing, and tighten collar setscrew.
25. Ensure that Oil Seal (piece #54-8) is in place.
26. Install Declutch Lever (piece #11) and tighten setscrew.
27. Rotate declutch lever clockwise, hold in position, and install Declutch Lever Stop (piece #93).
28. Install Clutch Tripper (piece #34-A, 34-B) and Tripper Spring (piece #58).
29. Install Declutch Housing Cover (piece #3) and Declutch Cover Gasket (piece #54-11).
30. Ensure that Handwheel Oil Seal (piece #54-8) is in place.
31. Install Worm Shaft End Cap (piece #4) and Worm Shaft End Cap Gaskets (piece #54-2).
 NOTE: Ensure that the same number of gaskets is installed as were removed during disassembly.
 Thickness of gaskets must be sufficient to prevent end cap from bearing on drive shaft.
32. Install Worm Gear (piece #13).
33. Install Torque Drive Sleeve (piece #8) and Drive Sleeve Thrust Bearing (piece #40).
34. Apply fresh, clean lubricant in actuator housing. For quantity see Section 7.1, Lubrication.
35. Install Housing Cover Gasket (piece #54-7) and Housing Cover (piece #3).
36. Install Handwheel Clutch (piece #83), Handwheel (piece #5), and Handwheel Washer (piece #88) on
 Handwheel Shaft and Pinion (piece #18).
37. Install Torque Switch (piece #301) and Geared Limit Switch (piece #305).
38. Connect motor leads and leads to torque switch and geared limit switch.

7.2.4 Drive 2 (Thrust Housing Only) Reassembly

1. If Thrust Adapter Assembly (piece #125) is not disassembled, go to Step No. 7.
 NOTE: Thrust bearing races should be pressed on Thrust Drive Sleeve (piece #126), in Thrust
 Adapter Housing (piece #125), and Thrust Bearing Cartridge (piece #128) prior to beginning
 assembly procedure.
2. Install Lower Bearing Roller Assembly (piece #131) in Thrust Adapter Housing (piece #125).
3. Install short end of Thrust Drive Sleeve (piece #126) into Thrust Adapter Housing (piece #125).
4. Install Upper Bearing Roller Assembly (piece #131) on the Thrust Drive Sleeve (piece #126).
5. Install Thrust Bearing Cartridge (piece #128), thread tight, or until drag is felt on thrust drive sleeve
 and tighten screw.
6. Install Oil Seal (piece #54-6) and Seal Retainer Plate (piece #129).
7. Lift actuator or turn upside down. Install Housing Thrust Adapter Assembly (piece #125). Ensure
 that Thrust Drive Sleeve O-Ring (piece #134) is in place.
8. Install Stem Nut (piece #127).
9. Install Drive Sleeve Locknut (piece #130) and crimp or stake the top threads to two places.
 WARNING: Drive sleeve locknut has left-hand threads and must be rotated counterclockwise.
Figure 7.7 – L120-2000 Drive Sleeve Side View (Refer to Table 8.2 for parts list)
Figure 7.8 - L120-2000 Top View (Refer to Table 8.2 for parts list)
Figure 7.9 – L120-2000 Side View (Refer to Table 8.2 for parts list)
Figure 7.10 - L120-2000 Exploded View
<table>
<thead>
<tr>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
<td>50</td>
<td>1</td>
<td>Declutch Lever Nameplate</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Declutch Housing</td>
<td>52-1</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Housing Cover</td>
<td>52-6</td>
<td>1</td>
<td>Handwheel Shaft Bearing</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Worm Shaft End Cap</td>
<td>52-7</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Handwheel</td>
<td>52-8</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Drive Sleeve</td>
<td>52-9</td>
<td>1</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Handwheel Gear</td>
<td>53-3</td>
<td>1</td>
<td>Spirolox Ring</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Declutch Lever</td>
<td>53-8</td>
<td>1</td>
<td>Spirolox Ring</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Worm Gear</td>
<td>53-9</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Bearing Cup</td>
<td>54-1</td>
<td>1</td>
<td>Declutch Housing Gasket</td>
</tr>
<tr>
<td>16-1</td>
<td>1</td>
<td>Bearing Cartridge Cap</td>
<td>54-2</td>
<td>2</td>
<td>Worm Shaft End Cap Gasket</td>
</tr>
<tr>
<td>16-2</td>
<td>2</td>
<td>Thrust Washer</td>
<td>54-3</td>
<td>1</td>
<td>Quad Ring</td>
</tr>
<tr>
<td>16-3</td>
<td>various</td>
<td>Belleville Spring</td>
<td>54-5</td>
<td>1</td>
<td>O-Ring</td>
</tr>
<tr>
<td>16-5</td>
<td>1</td>
<td>Torque Limit Sleeve</td>
<td>54-6</td>
<td>1</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>16-8</td>
<td>1</td>
<td>Bearing Cartridge Stem</td>
<td>54-7</td>
<td>3</td>
<td>Housing Cover Gasket</td>
</tr>
<tr>
<td>16-10</td>
<td>1</td>
<td>Cartridge Stem Locking Nut</td>
<td>54-8</td>
<td>1</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Hollow Drive Shaft</td>
<td>54-10</td>
<td>1</td>
<td>Declutch Cap Gasket</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Handwheel Shaft and Pinion</td>
<td>54-11</td>
<td>1</td>
<td>Declutch Cover Gasket</td>
</tr>
<tr>
<td>19-1</td>
<td>1</td>
<td>Declutch Shaft</td>
<td>55-1</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>19-2</td>
<td>1</td>
<td>Declutch Arm</td>
<td>55-2</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>19-3</td>
<td>1</td>
<td>Declutch Shaft Drum</td>
<td>55-3</td>
<td>1</td>
<td>Welsh Plug</td>
</tr>
<tr>
<td>19-5</td>
<td>1</td>
<td>Groove Pin</td>
<td>55-4</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>19-6</td>
<td>1</td>
<td>Roll Pin</td>
<td>55-5</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>19-7</td>
<td>1</td>
<td>Roll Pin</td>
<td>55-6</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Motor Adapter</td>
<td>55-7</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>30-1</td>
<td>1</td>
<td>Worm</td>
<td>55-8</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>30-2</td>
<td>1</td>
<td>Worm Bushing</td>
<td>55-9</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>31-1</td>
<td>1</td>
<td>Motor Pinion</td>
<td>55-10</td>
<td>1</td>
<td>Jam Nut</td>
</tr>
<tr>
<td>31-2</td>
<td>1</td>
<td>Intermediate Gear</td>
<td>55-11</td>
<td>1</td>
<td>Flat Head Mach Screw</td>
</tr>
<tr>
<td>32-1</td>
<td>1</td>
<td>Intermediate Pinion</td>
<td>55-12</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>32-2</td>
<td>1</td>
<td>Output Worm Shaft Gear</td>
<td>55-13</td>
<td>2</td>
<td>Tripper Bolt</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>Sliding Gear Clutch</td>
<td>55-14</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>34-A</td>
<td>1</td>
<td>Clutch Tripper</td>
<td>55-15</td>
<td>1</td>
<td>Drive Screw</td>
</tr>
<tr>
<td>34-B</td>
<td>1</td>
<td>Clutch Tripper</td>
<td>56-5</td>
<td>1</td>
<td>Grease Fitting</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Worm Gear Spacer</td>
<td>56-6</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>Shim Set Bearing</td>
<td>56-7</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>Bearing Cup</td>
<td>56-8</td>
<td>1</td>
<td>Hallowel Collar</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>Bearing Cone</td>
<td>56-9</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>42-1</td>
<td>1</td>
<td>Declutch Fork</td>
<td>56-10</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>42-4</td>
<td>1</td>
<td>Fork Roller</td>
<td>56-12</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>42-5</td>
<td>1</td>
<td>Roller Pinion</td>
<td>56-13</td>
<td>2</td>
<td>Tripper Bolt</td>
</tr>
<tr>
<td>44-1</td>
<td>1</td>
<td>Bearing Locknut</td>
<td>56-15</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>Clutch Compression Spring</td>
<td>56-16</td>
<td>1</td>
<td>Key</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>Spring Washer</td>
<td>56-17</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56-20</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56-21</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
</tbody>
</table>
Table 7.2 Continued - L120-2000 typical parts list

<table>
<thead>
<tr>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
<th>Piece No.</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>1</td>
<td>Tripper Spring</td>
<td>102</td>
<td>1</td>
<td>Gear Insert</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>Hinge</td>
<td>103</td>
<td>1</td>
<td>Split Ring</td>
</tr>
<tr>
<td>70-1</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
<td>104</td>
<td>1</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>70-2</td>
<td>1</td>
<td>Lockwasher</td>
<td>105</td>
<td>1</td>
<td>Motor Adaptor Gasket</td>
</tr>
<tr>
<td>73</td>
<td>2</td>
<td>Bearing Cup</td>
<td>106</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>76</td>
<td>1</td>
<td>Gear Limit Threaded Collar</td>
<td>107</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>Solid Drive Shaft</td>
<td>114</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>78</td>
<td>1</td>
<td>Gear Clutch Spacer</td>
<td>122</td>
<td>1</td>
<td>Thrust Drive Sleeve</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
<td>Bearing Adapter</td>
<td>125</td>
<td>1</td>
<td>Thrust Adapter Housing</td>
</tr>
<tr>
<td>80-1</td>
<td>1</td>
<td>Bearing Locknut</td>
<td>126</td>
<td>1</td>
<td>Thrust Drive Sleeve</td>
</tr>
<tr>
<td>81-1</td>
<td>1</td>
<td>Bearing Locknut</td>
<td>127</td>
<td>1</td>
<td>Stem Nut</td>
</tr>
<tr>
<td>81-2</td>
<td>1</td>
<td>Bearing Locknut</td>
<td>128</td>
<td>1</td>
<td>Bearing Cartridge</td>
</tr>
<tr>
<td>82-1</td>
<td>1</td>
<td>Flexible Jaw Clutch Housing</td>
<td>129</td>
<td>1</td>
<td>Seal Retainer Plate</td>
</tr>
<tr>
<td>82-2</td>
<td>1</td>
<td>Motor Clutch Gear Cam Pin</td>
<td>130</td>
<td>1</td>
<td>Drive Sleeve Locknut</td>
</tr>
<tr>
<td>82-3</td>
<td>1</td>
<td>Flexible Jaw Clutch Sleeve</td>
<td>131</td>
<td>1</td>
<td>Bearing Roller Assembly</td>
</tr>
<tr>
<td>82-4</td>
<td>1</td>
<td>Nylon Insert</td>
<td>132</td>
<td>1</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>82-5</td>
<td>1</td>
<td>Nylon Insert</td>
<td>133</td>
<td>1</td>
<td>Grease Fitting</td>
</tr>
<tr>
<td>82-6</td>
<td>6</td>
<td>Clutch Sleeve Insert</td>
<td>134</td>
<td>1</td>
<td>O-Ring</td>
</tr>
<tr>
<td>82-7</td>
<td>1</td>
<td>Flexible Jaw Clutch Collar</td>
<td>135</td>
<td>1</td>
<td>Housing Thrust Adapter Gasket</td>
</tr>
<tr>
<td>83</td>
<td>1</td>
<td>Handwheel Clutch</td>
<td>136</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>Gear Mounting Bracket</td>
<td>137</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>Handwheel Gear Bushing</td>
<td>138</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>86</td>
<td>1</td>
<td>Declutch Housing Cover</td>
<td>139</td>
<td>1</td>
<td>Soc Head Set Screw</td>
</tr>
<tr>
<td>87</td>
<td>1</td>
<td>Splined Insert</td>
<td>140</td>
<td>1</td>
<td>Seal Retainer Sleeve</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>Handwheel Washer</td>
<td>141</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td>Handwheel Gear Spacer</td>
<td>162</td>
<td>1</td>
<td>Motor Adapter Gasket</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>Stop Stud</td>
<td>182</td>
<td>1</td>
<td>Handwheel Spinner Kit</td>
</tr>
<tr>
<td>91</td>
<td>3</td>
<td>Declutch Shaft Washer</td>
<td>200-1</td>
<td>1</td>
<td>Limit Switch Compartment Cover</td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>Declutch Shaft spacer</td>
<td>200-2</td>
<td>1</td>
<td>Hex Head Cap Screw</td>
</tr>
<tr>
<td>93</td>
<td>1</td>
<td>Declutch Lever Stop</td>
<td>200-3</td>
<td>1</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>Torsion Spring</td>
<td>301</td>
<td>1</td>
<td>Torque Switch</td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>Declutch Cap</td>
<td>305</td>
<td>1</td>
<td>Geared Limit Switch</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>Bearing Spacer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standard Wiring Diagrams

Figure 8.1 – Wiring Diagram – No Controls
Figure 8.2 – Wiring Diagram – Integral Controls
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geared limit switch fails to stop valve travel.</td>
<td>A. Control wiring and motor reversing contactor.</td>
</tr>
<tr>
<td></td>
<td>B. Geared limit switch setting.</td>
</tr>
<tr>
<td></td>
<td>C. Setting rod to see that it has been backed off after each side of the switch has been set.</td>
</tr>
<tr>
<td></td>
<td>D. Remove limit switch and inspect for damaged or broken gear teeth.</td>
</tr>
<tr>
<td>Unable to operate actuator by motor.</td>
<td>A. Motor power and control circuits for supply and continuity.</td>
</tr>
<tr>
<td></td>
<td>B. Supply voltage vs. motor and controller nameplate rating.</td>
</tr>
<tr>
<td></td>
<td>C. For stalled motor. Shut off power and operate actuator by handwheel to move the valve.</td>
</tr>
<tr>
<td>Excessive handwheel effort.</td>
<td>A. Lubrication method and valve stem for damage.</td>
</tr>
<tr>
<td></td>
<td>B. If the valve packing gland is too tight.</td>
</tr>
<tr>
<td></td>
<td>C. If the valve is improperly lubricated.</td>
</tr>
<tr>
<td></td>
<td>D. If the stem nut is too tight on valve stem.</td>
</tr>
<tr>
<td></td>
<td>E. For faulty or damaged valve or parts.</td>
</tr>
</tbody>
</table>
To order parts or obtain further information about your Limitorque L120 valve actuators, contact your local Flowserve Limitorque distributor, sales office, or:

Flowserve Limitorque
5114 Woodall Road
P.O. Box 11318
Lynchburg, VA 24506-1318
Phone (434) 528-4400
Fax (434) 845-9736

To find the nearest Limitorque distributor or sales office near you, go to www.limitorque.com

All inquiries or orders must be accompanied by the following information:

1. Actuator Size
2. Order Number
3. Serial Number

This information can be found on the Limitorque nameplate affixed to the actuator.
EC Declaration of Conformity

Application of Council Directive(s)
2004/108/EC; EMC Directive
2006/42/EC; Machinery Directive
2003/10/EC; Airborne Noise Directive

Standard(s) to which Conformity is Declared
Machinery

EMC –
Emissions
EN 61000-6-3:2007+A1:2011
EN 61000-6-4:2007+A1:2011
EN 55011:2007

Immunity
EN 61000-6-2:2005
EN 61000-6-1:2007

Airborne Noise

Materials of Construction
Control Cover - Aluminum Alloy 319 – WP; Cast Iron ASTM A46, Class 35 – XP
CS Station - Aluminum Alloy 319
Nameplate - Stainless Steel
Housing - Cast iron, ASTM A48, Class 35; or Ductile Iron, ASTM A536

Manufacturer's Name
Flowserv Limitorque

Manufacturer's Address
3114 Woodall Road Lynchburg, VA 24502

Importer’s Name
Flowserv GB Ltd, Limotorque Division

Importer’s Address
Euro House Abex Road Newbury Berkshire, RG14 5EY England

Type & Description of Equipment
Valve Actuators

Model Numbers
SMB-009, 00, 0, 1, 2, 3, 4, 5, L120-100, <20, 800, 2000

SMB Series Note: Tested with Limitorque products only and with standards applicable at time of tests.

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s) and Standard(s).

[Signature]
John Thalberg PE
Senior Engineer, ATEX/IECEx Authorized Person, Flowserv Limitorque

Flowserv Limitorque
3114 Woodall Rd
Lynchburg VA 24502
August 28, 2012
This page intentionally left blank.
Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can (and often does) provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the Installation Operation Maintenance (IOM) instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and updating its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

© 2015 Flowserve Corporation, Irving, Texas, USA. Flowserve is a registered trademark of Flowserve Corporation.