ERPN-M centrifugal pumps

Horizontal, End Suction Magnetic Driven

PCN=71569270, 71569272, 71569273 02-08 (E)
Original Instructions
Type: ERPN-M

Serial No: G208xxx

Pumped Liquid:
Capacity: m³/h
Minimum Capacity: m³/h
Head: mFs
Speed: U/min -1

⚠️ These instructions should be read prior to installing, operating, using and maintaining this equipment.
1.0 INTRODUCTION AND SAFETY

1.1 General

These Instructions must always be kept close to product’s operating location or directly with the product.

Flowserve’s products are designed, developed and manufactured with state-of-the-art technologies in modern facilities. The unit is produced with great care and commitment to continuous quality control, utilising sophisticated quality techniques, and safety requirements.

Flowserve is committed to continuous quality improvement and being at service for any further information about the product in its installation and operation or about its support products, repair and diagnostic services.

These instructions are intended to facilitate familiarization with the product and its permitted use. Operating the product in compliance with these instructions is important to help ensure reliability in service and avoid risks. The instructions may not take into account local regulations; ensure such regulations are observed by all, including those installing the product. Always coordinate repair activity with operations personnel, and follow all plant safety requirements and applicable safety and health laws/regulations.

These instructions should be read prior to installing, operating, using and maintaining the equipment in any region worldwide. The equipment must not be put into service until all the conditions relating to safety noted in the instructions have been met.

1.2 CE marking and approvals

It is a legal requirement that machinery and equipment put into service within certain regions of the world shall conform with the applicable CE Marking Directives covering Machinery and, where applicable, Low Voltage Equipment, Electromagnetic Compatibility (EMC), Pressure Equipment Directive (PED) and Equipment for Potentially Explosive Atmospheres (ATEX).

Where applicable the Directives, and any additional Approvals, cover important safety aspects relating to machinery and equipment and the satisfactory provision of technical documents and safety instructions. Where applicable this document incorporates information relevant to these Directives. To establish Approvals and if the product itself is CE Marked check the serial number plate and the Certification.

1.3 Disclaimer

Information in these User Instructions is believed to be reliable. In spite of all the efforts of Flowserve Pump Division to provide sound and all necessary information the content of this manual may appear insufficient and is not guaranteed by Flowserve as to its completeness or accuracy.

Flowserve manufactures products to exacting International Quality Management System Standards as certified and audited by external Quality Assurance organisations. Genuine parts and accessories have been designed, tested and incorporated into the products to help ensure their continued product quality and performance in use. As Flowserve cannot test parts and accessories sourced from other vendors the incorrect incorporation of such parts and accessories may adversely affect the performance and safety features of the products. The failure to properly select, install or use authorised Flowserve parts and accessories is considered to be misuse. Damage or failure caused by misuse is not covered by Flowserve’s warranty. In addition, any modification of Flowserve products or removal of original components may impair the safety of these products in their use.

1.4 Copyright

All rights reserved. No part of these instructions may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of Flowserve Pump Division.

1.5 Duty conditions

This product has been selected to meet the specifications of your purchaser order. The acknowledgement of these conditions has been sent separately to the Purchaser. A copy should be kept with these instructions.

The product must not be operated beyond the parameters specified for the application. If there is any doubt as to the suitability of the product for the application intended, contact Flowserve for advice, quoting the serial number.

If the conditions of service on your purchase order are going to be changed (for example liquid pumped, temperature or duty) it is requested that the user seeks Flowserve’s written agreement before start up.
1.6 Safety

1.6.1 Summary of safety markings
These user instructions contain specific safety markings where non-observance of an instruction would cause hazards. The specific safety markings are:

This symbol indicates electrical safety instructions where non-compliance will involve a high risk to personal safety or the loss of life.

This symbol indicates safety instructions where non-compliance would affect personal safety and could result in loss of life.

This symbol indicates "hazardous and toxic fluid" safety instructions where non-compliance would affect personal safety and could result in loss of life.

This symbol indicates "strong magnetic field" safety instructions where non-compliance would affect personal safety, pacemakers, instruments or stored data sensitive to magnetic fields.

This symbol indicates explosive atmosphere marking according to ATEX. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion.

This symbol is used in safety instructions to remind not to rub non-metallic surfaces with a dry cloth; ensure the cloth is damp. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion.

Note: The sign is not a safety symbol but indicates an important instruction in the assembly process.

This symbol indicates potential risks connected with extremely high temperatures.

This symbol indicates potential risks connected with extremely low temperatures.

1.6.2 Personnel qualification and training
All personnel involved in the operation, installation, inspection and maintenance of the unit must be qualified to carry out the work involved. If the personnel in question do not already possess the necessary knowledge and skill, appropriate training and instruction must be provided. If required the operator may commission the manufacturer / supplier to provide applicable training.
Always co-ordinate repair activity with operations and health and safety personnel, and follow all plant safety requirements and applicable safety and health laws/regulations.

1.6.3 Safety action
This is a summary of conditions and actions to help prevent injury to personnel and damage to the environment and to equipment. For products used in potentially explosive atmospheres section 1.6.4 also applies.

PREVENT EXCESSIVE EXTERNAL PIPE LOAD
Do not use pump as a support for piping. Do not mount expansion joints so that their force, due to internal pressure, acts on the pump flange.

ONLY CHECK DIRECTION OF MOTOR ROTATION WITH COUPLING ELEMENT/ PINS REMOVED
Starting in reverse direction of rotation will damage the pump.

ENSURE CORRECT LUBRICATION (See section 5 Commissioning, startup, operation and shutdown.)

START THE PUMP WITH OUTLET VALVE PART OPENED
(Unless otherwise instructed at a specific point in the user instructions.)
This is recommended to avoid the risk of overloading and damaging the pump motor at full or zero flow. Pumps may be started with the valve further open only on installations where this situation cannot occur. Pump outlet valve shall be adjusted to comply with the duty following the run-up process (See section 5 Commissioning, startup, operation and shutdown).

START THE PUMP WITH OUTLET VALVE FULLY OPEN
This is recommended to avoid the risk of overloading and damaging the pump motor where greater power is taken at low or shut off flow. Pump outlet valve shall be adjusted to comply with the duty following the
run-up process (See section 5 Commissioning, startup, operation and shutdown).

CAUTION

NEVER RUN THE PUMP DRY

CAUTION

INLET VALVES TO BE FULLY OPEN WHEN PUMP IS RUNNING

Running the pump at zero flow or below the recommended minimum flow continuously will cause damage to the magnets and/or bearings.

CAUTION

INLET VALVES TO BE FULLY OPEN WHEN PUMP IS RUNNING

Running the pump at zero flow or below the recommended minimum flow continuously will cause damage to the seal.

CAUTION

DO NOT RUN THE PUMP AT ABNORMALLY HIGH OR LOW FLOW RATES

Operating at a flow rate higher than normal or at a flow rate with no back pressure on the pump may overload the motor and cause cavitation. Low flow rates may cause a reduction in pump/bearing life, overheating of the pump, instability and cavitation/vibration.

CAUTION

When ambient temperatures are likely to drop below freezing point, the pump and any cooling and flushing arrangements must be drained or otherwise protected.

HIGH MAGNETIC FIELDS

Persons working with permanent parts must be made aware that there is a potential danger from magnetic fields e.g. influence on heart pacemakers, credit cards, computers, computer tapes/discs and watches.

Great care must be taken when working with or assembling/ dismantling magnetic rotors because of the very high forces which can be created by the magnets.

When shipping raw or bare magnet assemblies, especially by air, special precautions may be necessary.

HANDLING COMPONENTS

Many precision parts have sharp corners and the wearing of appropriate safety gloves and equipment is required when handling these components. To lift heavy pieces above 25 kg (55 lbs) use a crane corresponding to the mass and in accordance with current local regulations.

DANGER

NEVER DO MAINTENANCE WORK WHILST THE UNIT IS CONNECTED TO POWER

HAZARDOUS LIQUIDS

When the pump is handling hazardous liquids care must be taken to avoid exposure to the liquid by appropriate siting of the pump, limiting personnel access and by operator training. If the liquid is flammable and/or explosive strict safety procedures must be applied.

Gland Packing must not be used when pumping hazardous liquids.

DRAIN PUMP AND ISOLATE PIPEWORK BEFORE DISMANTLING THE PUMP

The appropriate safety precautions should be taken where the pumped liquids are hazardous.

FLUORO-ELASTOMERS (When fitted)

When a pump has experienced temperatures over 250 °C (482 °F), partial decomposition of fluoro-elastomers (example: Viton) will occur. In this condition these are extremely dangerous and skin contact must be avoided.

GUARDS MUST NOT BE REMOVED WHILE PUMP IS OPERATIONAL

THERMAL SHOCK

Rapid changes in the temperature of the liquid within the pump can cause thermal shock, which can result in damage or breakage of components and should be avoided.

NEVER APPLY HEAT TO REMOVE IMPELLER

Trapped lubricant or vapour could cause an explosion.

HOT AND COLD PARTS

If hot or freezing components or auxiliary heating supplies can present a danger to operators, they must be shielded to avoid accidental contact. If complete protection is not possible, the machine access must be limited to maintenance staff only. Note: bearing housings must not be insulated and drive motors and bearings may be hot.

If the temperature is greater than 68 °C (175 °F) or below 5 °C (20 °F) in a restricted zone, or exceeds local regulations, action as above shall be taken.

1.6.4 Products used in potentially explosive atmospheres

Ex

Measures are required to:
- Avoid excess temperature
• Prevent build up of explosive mixtures
• Prevent the generation of sparks
• Prevent leakages
• Maintain the pump to avoid hazard

The following instructions for pumps and pump units when installed in potentially explosive atmospheres must be followed to help ensure explosion protection. Both electrical and non-electrical equipment must meet the requirements of European Directive 94/9/EC.

1.6.4.1 Scope of compliance

Use equipment only in the zone for which it is appropriate. Always check that the driver, drive coupling assembly, seal and pump equipment are suitably rated and/or certified for the classification of the specific atmosphere in which they are to be installed.

Where Flowserve has supplied only the bare shaft pump, the Ex rating applies only to the pump. The party responsible for assembling the pump set shall select the coupling, driver and any additional equipment, with the necessary CE Certificate/Declaration of Conformity establishing it is suitable for the area in which it is to be installed.

The output from a variable frequency drive (VFD) can cause additional heating affects in the motor and so, for pump sets with a VFD, the ATEX Certification for the motor must state that it covers the situation where electrical supply is from the VFD. This is particular requirement still applies even if the VFD is in a safe area.

1.6.4.2 Marking

An example of ATEX equipment marking is shown below. The actual classification of the pump will be engraved on the nameplate.

![Equipment Marking](Image)

Equipment Group
- I = Mining
- II = Non-mining

Category
- 2 or M2 = High level protection
- 3 = normal level of protection

Gas and/or Dust
- G = Gas
- D = Dust
- c = Constructional safety

Gas Group (Equipment Category 2 only)

<table>
<thead>
<tr>
<th>Temperature class to EN 13463-1</th>
<th>Maximum surface temperature permitted</th>
<th>Temperature limit of liquid handled (depending on material and construction variant - check which is lower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>85 °C (185 °F)</td>
<td>Consult Flowserve</td>
</tr>
<tr>
<td>T5</td>
<td>100 °C (212 °F)</td>
<td>Consult Flowserve</td>
</tr>
<tr>
<td>T4</td>
<td>135 °C (275 °F)</td>
<td>110 °C (230 °F) *</td>
</tr>
<tr>
<td>T3</td>
<td>200 °C (392 °F)</td>
<td>175 °C (347 °F) *</td>
</tr>
<tr>
<td>T2</td>
<td>300 °C (572 °F)</td>
<td>270 °C (518 °F) *</td>
</tr>
<tr>
<td>T1</td>
<td>450 °C (842 °F)</td>
<td>350 °C (662 °F) *</td>
</tr>
</tbody>
</table>

The responsibility for compliance with the specified maximum liquid temperature is with the plant operator.

Pumps have a temperature class as stated in the ATEX Ex rating on the nameplate. These are based on a maximum ambient of 40 °C (104 °F); refer to Flowserve for higher ambient temperatures.

The surface temperature on the pump is influenced by the temperature of the liquid handled. The maximum permissible liquid temperature depends on the temperature class and must not exceed the values in the table that follows. The temperature rise at the seals and bearings and due to the minimum permitted flow rate is taken into account in the temperatures stated.

Temperature classification “Tx” is used when the liquid temperature varies and when the pump is required to be used in differently classified potentially explosive atmospheres. In this case the user is responsible for ensuring that the pump surface temperature does not exceed that permitted in its actual installed location.

Do not attempt to check the direction of rotation with the coupling element/pins fitted due to the risk of severe contact between rotating and stationary components.

Where there is any risk of the pump being run against a closed valve generating high liquid and casing external surface temperatures it is recommended that users fit an external surface temperature protection device.
Avoid mechanical, hydraulic or electrical overload by using motor overload trips or a Power Monitor and make routine vibration monitoring.

In dirty or dusty environments, regular checks must be made and dirt removed from areas around close clearances, bearing housings and motors.

1.6.4.4 Additional requirements for pumps with magnetic drive

It is recommended for users to fit a temperature monitor in the magnetic drive bearing/shell area when pumping liquids with solids content or liquids that can polymerize or freeze.

In unmanned locations where a magnetic drive is used it is advisable to fit a vibration monitor.

1.6.4.5 Preventing the build up of explosive mixtures

ENSURE THE PUMP IS PROPERLY FILLED AND VENTED AND DOES NOT RUN DRY

Ensure the pump and relevant suction and discharge pipeline system is totally filled with liquid at all times during the pump operation, so that an explosive atmosphere is prevented. In addition it is essential to make sure that seal chambers, auxiliary shaft seal systems and any heating and cooling systems are properly filled.

If the operation of the system cannot avoid this condition the fitting of an appropriate Dry Run protection device is recommended (eg liquid detection or a Power Monitor).

To avoid potential hazards from fugitive emissions of vapour or gas to atmosphere the surrounding area must be well ventilated.

1.6.4.6 Preventing sparks

To prevent a potential hazard from mechanical contact the coupling guard must be non-sparking and anti-static.

To avoid the potential hazard from random induced current generating a spark the earth contact on the baseplate must be used.

Avoid electrostatic charge: do not rub non-metallic surfaces with a dry cloth; ensure cloth is damp.

The coupling must be selected to comply with 94/9/EC and correct alignment must be maintained.

1.6.4.7 Preventing leakage

The pump must only be used to handle liquids for which it has been approved to have the correct corrosion resistance.

Avoid entrapment of liquid in the pump and associated piping due to closing of suction and discharge valves, which could cause dangerous excessive pressures to occur if there is heat input to the liquid. This can occur if the pump is stationary or running.

Bursting of liquid containing parts due to freezing must be avoided by draining or protecting the pump and ancillary systems.

If leakage of liquid to atmosphere can result in a hazard, the installation of a liquid detection device is recommended.

1.6.4.8 Additional requirements for pumps with magnetic drive

If protection greater than Categories 2 and M2 is required, then liquid detection should be provided in the bearing housing/support head.

1.6.4.9 Maintenance to the centrifugal pump to avoid the hazard

CORRECT MAINTENANCE IS REQUIRED TO AVOID POTENTIAL HAZARDS WHICH GIVE A RISK OF EXPLOSION

The responsibility for compliance with maintenance instructions is with the plant operator.

To avoid potential explosion hazards during maintenance, the tools, cleaning and painting materials used must not give rise to sparking or adversely affect the ambient conditions. Where there is a risk from such tools or materials, maintenance must be conducted in a safe area.

It is recommended that a maintenance plan and schedule is adopted (see section 6, Maintenance) to include the following.

a) Any auxiliary systems installed must be monitored, if necessary, to ensure they function correctly.

b) Check for any leaks from gaskets and seals. The correct functioning of the magnetic coupling must be checked regularly.

c) Check bearing lubricant level, and if the hours run show a lubricant change is required.

d) Check that the duty condition is in the safe operating range for the pump.
e) Check vibration, noise level and surface
temperature at the bearings to confirm
satisfactory operation.

f) Check dirt and dust is removed from areas
around close clearances, bearing housings and
motors.

g) Check coupling alignment and re-align if
necessary.

1.7 Warning label

![Warning Label](image-url)

WARNING

ESSENTIAL PROCEDURES BEFORE STARTING!

- **INSTALL AND OPERATE EQUIPMENT ONLY IN ACCORDANCE WITH THE INSTRUCTION MANUAL SUPPLIED SEPARATELY!**
- **ENSURE GUARDS ARE SECURELY IN PLACE!**
- **ENSURE CORRECT DIRECTION OF ROTATION!**
- **ENSURE ALL EXTERNAL CONNECTIONS TO THE PUMP/SHAFT SEALING AND DRIVER ARE CONNECTED AND OPERATIONAL!**
- **FILL PRIME UNIT AND SYSTEM. DO NOT RUN DRY!**
- **ENSURE UNIT ON A FIRM FOUNDATION AND THAT COUPLING FACES ARE IN CORRECT ALIGNMENT PRIOR TO AND AFTER BOLTING BASEPLATE DOWN AND FIXING PIPework.**
- **SEE MANUAL FOR TOLERANCES.**
- **ENSURE CORRECT DRIVER DIRECTION OF ROTATION WITH COUPLING ELEMENT/ PINS REMOVED. OTHERWISE SERIOUS DAMAGE MAY RESULT!**

CAUTION

- **THIS MACHINE MUST BE FILLED WITH OIL BEFORE STARTING!**
- **FAILURE IN FOLLOWING THESE PROCEDURES MAY RESULT IN PERSONAL INJURY OR EQUIPMENT DAMAGE!**
1.8 Specific machine performance
For performance parameters see section 1.5, Duty conditions. When the Contract requirement specifies these to be incorporated into user instructions these are included here. Where performance data has been supplied separately to the purchaser these should be obtained and retained with these user instructions if required.

1.9 Noise level
When pump noise level exceeds 85 dBA attention must be given to prevailing Health and Safety Legislation, to limit the exposure of plant operating personnel to the noise. The usual approach is to control exposure time to the noise or to enclose the machine to reduce emitted sound. You may have already specified a limiting noise level when the equipment was ordered, however if no noise requirements were defined then machines above a certain power level will exceed 85 dBA.
In such situations consideration must be given to the fitting of an acoustic enclosure.
Pump noise level is dependent on a number of factors - the type of motor fitted, the operating capacity, pipework design and acoustic characteristics of the building. The levels specified in the table below are based on measurements according to EN ISO 3744 for pumps only and not guaranteed.
The dBA values are based on the pump only. To consider the noise of the driver, follow the guidelines on the attached data sheet. For driver noise levels refer to driver manufactures instruction. They are Sound Pressure levels at 1 m (3.3 ft) from the directly driven pump, for "free field over a reflecting plane". If a pump only has been purchased, for fitting with your own driver, then the "pump only" noise levels from the table should be combined with the level for the driver obtained from the supplier. Consult a Noise Specialist for this calculation.

For units driven by equipment other than electric motors or units contained within enclosures, see the accompanying information sheets and manuals.
Power BHP Power Kw. dB(A) Value

<table>
<thead>
<tr>
<th>Power BHP</th>
<th>Power Kw.</th>
<th>dB(A) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.2</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>2.7</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>3.5</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>4.4</td>
<td>70</td>
</tr>
<tr>
<td>7.6</td>
<td>5.6</td>
<td>71</td>
</tr>
<tr>
<td>9.4</td>
<td>6.9</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>8.8</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>11.0</td>
<td>74</td>
</tr>
<tr>
<td>19</td>
<td>14.0</td>
<td>75</td>
</tr>
<tr>
<td>24</td>
<td>17.6</td>
<td>76</td>
</tr>
<tr>
<td>31</td>
<td>22.8</td>
<td>77</td>
</tr>
<tr>
<td>39</td>
<td>28.7</td>
<td>78</td>
</tr>
<tr>
<td>49</td>
<td>36.0</td>
<td>79</td>
</tr>
<tr>
<td>62</td>
<td>45.6</td>
<td>80</td>
</tr>
<tr>
<td>77</td>
<td>56.6</td>
<td>81</td>
</tr>
<tr>
<td>95</td>
<td>69.9</td>
<td>82</td>
</tr>
<tr>
<td>115</td>
<td>84.6</td>
<td>83</td>
</tr>
<tr>
<td>145</td>
<td>106.6</td>
<td>84</td>
</tr>
<tr>
<td>190</td>
<td>139.7</td>
<td>85</td>
</tr>
<tr>
<td>250</td>
<td>183.8</td>
<td>86</td>
</tr>
<tr>
<td>350</td>
<td>257.4</td>
<td>87</td>
</tr>
<tr>
<td>500</td>
<td>367.6</td>
<td>88</td>
</tr>
<tr>
<td>700</td>
<td>514.7</td>
<td>89</td>
</tr>
<tr>
<td>940</td>
<td>691.2</td>
<td>90</td>
</tr>
<tr>
<td>1100</td>
<td>808.8</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Octave MID_BAND Frequency, HZ</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1K</th>
<th>2K</th>
<th>4K</th>
<th>8K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power BHP Power Kw. dB(A) Value</td>
<td>54</td>
<td>58</td>
<td>58</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>63</td>
<td>63</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>59</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>64</td>
<td>64</td>
<td>62</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>61</td>
<td>65</td>
<td>65</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>61</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>66</td>
<td>66</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>62</td>
<td>57</td>
</tr>
<tr>
<td>7.6</td>
<td>67</td>
<td>67</td>
<td>65</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>9.4</td>
<td>70</td>
<td>69</td>
<td>69</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>73</td>
<td>67</td>
<td>67</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>63</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>74</td>
<td>68</td>
<td>68</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>19</td>
<td>75</td>
<td>69</td>
<td>69</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>76</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>66</td>
<td>66</td>
<td>61</td>
<td>56</td>
</tr>
<tr>
<td>31</td>
<td>77</td>
<td>71</td>
<td>71</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>67</td>
<td>62</td>
</tr>
<tr>
<td>39</td>
<td>78</td>
<td>72</td>
<td>72</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>68</td>
<td>63</td>
</tr>
<tr>
<td>49</td>
<td>79</td>
<td>73</td>
<td>73</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>62</td>
<td>80</td>
<td>74</td>
<td>74</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>77</td>
<td>81</td>
<td>75</td>
<td>75</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>95</td>
<td>82</td>
<td>75</td>
<td>75</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>115</td>
<td>83</td>
<td>77</td>
<td>77</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>73</td>
<td>68</td>
</tr>
<tr>
<td>145</td>
<td>84</td>
<td>78</td>
<td>78</td>
<td>76</td>
<td>76</td>
<td>74</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>190</td>
<td>85</td>
<td>79</td>
<td>79</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>250</td>
<td>86</td>
<td>80</td>
<td>80</td>
<td>78</td>
<td>78</td>
<td>76</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>350</td>
<td>87</td>
<td>81</td>
<td>81</td>
<td>79</td>
<td>79</td>
<td>79</td>
<td>77</td>
<td>67</td>
</tr>
<tr>
<td>500</td>
<td>88</td>
<td>82</td>
<td>82</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>700</td>
<td>89</td>
<td>83</td>
<td>83</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>79</td>
<td>74</td>
</tr>
<tr>
<td>940</td>
<td>90</td>
<td>84</td>
<td>84</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>1100</td>
<td>91</td>
<td>85</td>
<td>85</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>81</td>
<td>76</td>
</tr>
</tbody>
</table>

Sound pressure readings are for information only and are not subject to guarantee by Flowserve. Decibel readings do not include driver or system noise.

Pump tested at 100% of the best efficiency point at max. impeller diameter with water.

dB correction for combining noises (pump+motor)

<table>
<thead>
<tr>
<th>Difference between two levels to be combined, dB</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to the higher level to obtain the combined noise level, dB</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:

1) The values showed are measured at a distance of 1 mt. (horizontally) from major pump surfaces and 1.5 mt. above the floor.
2) The values shown are expressed in dB.
3) For Noise Test Procedure refer to Works Standard L-109-0
4) The values shown have been derived from actual noise-test data and are based on the following conditions:
 - Equipment is located in a free field above a reflecting plane in which the reduction in noise level in all directions is 6dB in each octave band for each doubling of distance.
 - Background noise is 10dB minimum below all noise levels in each octave band.
 - The values shown are at a distance of 1 meter (horizontally) from the major pump surface and 1.5 meters above the floor, using a standard pressure reference of 0.00002 newton per square meter.
 - Overall noise level, dB(A) is determined at points of maximum noise level and the values of all mid-band frequencies are basis A scale readings.

When the required condition flow is outside the range of 75 to 125% BEP, a part load correction (PLC) must be added to the noise level as follows:

<table>
<thead>
<tr>
<th>Percent of BEP @ required impeller diameter</th>
<th>PLC in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>74 to 62 or 126 to 136</td>
<td>+1</td>
</tr>
<tr>
<td>61 to 50 or 137 to 150</td>
<td>+2</td>
</tr>
<tr>
<td>49 to 38</td>
<td>+3</td>
</tr>
<tr>
<td>37 to 25</td>
<td>+4</td>
</tr>
</tbody>
</table>
2.0 TRANSPORT AND STORAGE

2.1 Consignment receipt and unpacking
Immediately after receipt of the equipment it must be checked against the delivery/shipping documents for its completeness and that there has been no damage in transportation. Any shortage and/or damage must be reported immediately to the Flowserve Pump Division and received in writing within one month of receipt of the equipment. Latter claims cannot be accepted.
Check any create/boxes/wrappings for any accessories or spare parts, which may be packed separately with the equipment or attached to side walls of the box or equipment. Each product has a unique serial number. Check that this number corresponds with that advised and always quote this number in correspondence as well as when ordering spare parts or further accessories.

2.2 Handling
Boxes, crates, pallets or cartons may be unloaded using fork lift vehicles or slings dependent on their size and construction.

2.3 Lifting
Four lifting lugs are provided on the baseplate to lift the complete unit.

⚠️ Take care by applying slings or ropes about auxiliary piping and seal systems.
A crane must be used for all pump sets in excess of 25kg (55lb). Fully trained personnel must carry out lifting, in accordance with local regulations. The driver and pump weights are recorded on their respective nameplates.

2.4 Storage

If the unit will not be put immediately into service, it should be stored in a dry room. To avoid any damage during the storage period, the influence of any low or high frequency vibration must be totally inhibited. If the pump is delivered sealed in a plastic-wrapper, it is of max. importance to avoid any damage of that wrapper, because this will protect the pump against humidity. Therefore it must be checked if this wrapper has become cracked and if so, the wrapper must be renewed.

2.4.1 Long period storage

If the pump is delivered in a plastic bag, the preservation stands up for one year. If the storage period exceeds this time, the preservation must be checked and renewed. Also the air tight plastic bag must be changed. Moreover we recommend to order a Flowserv Service Engineer for checking the pump before the first start up.

2.5 Recycling and end of product life

At the end of the service life of the product or its parts, the relevant materials and parts should be recycled or disposed of using an environmentally acceptable method and local regulations. If the product contains substances, which are harmful to the environment, these should be removed and disposed of in accordance with current regulations. This also includes the liquids and or gases in the "seal system" or other utilities.

Make sure that hazardous substances are disposed of safety and that the correct personal protective equipment is used. The safety specifications must be in accordance with the current regulations at all times.

3.0 DESCRIPTION

3.1 Configuration

The model ERPN-M belongs to Flowserves family of API 685 magnetic driven end suction pumps. The pump line is based on a modular system, thus providing maximum design and operating flexibility. The pump is available with several impeller designs:
- closed impeller with front and back wear rings. Above a certain size the axial thrust is balanced by balancing holes.
- semi open impeller with back vanes for abrasive fluids
- free flow (recessed) impeller for fluids containing fibre

All three impeller versions can be combined with an inducer for low NPSHA applications. For high suction pressure applications the balance holes are seized individually to ensure a trouble-free operation.

The sense of rotation of the pump is clockwise (CW), looking from the coupling to the shaft end of the pump.

3.2 Nomenclature

Example:

ERPN-M 150-200 – X-Ind.
150 Discharge nozzle in mm
200 max. impeller size in mm
Ind Inducer
X: S high suction pressure
 O semi open impeller
 F free flow impeller

3.3 Design of major parts

3.3.1 Bearing housing

Made of carbon steel. It is flanged to the pump casing and provides enough space for mechanical seals according to API 682.

3.3.2 Pump casing

The pump casing is of volute type. For larger sizes double volute design is used to minimize radial forces. Back pull out design for easy maintenance, so the casing remains on its foundation in case of repair.

3.3.3 Hydraulics

3.3.3.1 Closed impeller

This is the standard version. Both, the impeller and pump casing have renewable front and back wear rings. Above a certain impeller size, the axial thrust is balanced by balancing holes.

3.3.3.2 Free flow impeller

The impeller has straight radial vanes and is mounted recessed in the pump casing. The axial thrust is balanced by back vanes.
3.3.3.3 Semi open impeller
The pump casing is equipped with a renewable wear plate. The axial thrust is balanced by back vanes.

3.3.3.4 Inducer
All different impellers can be optionally equipped with an inducer for low NPSHA applications.

3.3.4 Magnetic Coupling
The magnetic coupling consists of:

a) The Can:
 This is the actual sealing element of the magnetic coupling. The driving torque is transmitted via the can due to the magnetic field between the inner and outer rotors.

b) Outer Rotor:
 The outer rotor driven by the pump shaft and holds the set of magnets needed to meet the torque requirement.

c) Inner Rotor:
 The inner rotor drives the impeller. Fluid lubricated Silicon Carbide bearings take all the hydraulic forces.

d) Secondary Seal:
 As required by API 685 a secondary seal is used to avoid leakage to the atmosphere in case of magnetic coupling failure.

e) Temperature Sensor:
 It observes the temperature at the Can surface to ensure that the Silicon Carbide bearings are flushed properly.

4.2 Part Assemblies
The pumps are delivered completely mounted and prealigned with the motor. Also the shaft seal is in the correct position. Final alignment after complete installation is necessary. If drivers and/or seal systems are delivered separately, follow the assembly procedure in section 6.8.

4.3 Foundation
The foundation shall be located on a place that allows a minimum of pipe work and that is easily accessible for inspection during operation. According to the environment the foundation may consist of concrete or of steel. It must be rigid and heavy enough to absorb normal vibrations and shocks.

4.3.1 Horizontal alignment of the baseplate
Horizontal alignment is done with levelling plates. Use a spirit level for correct horizontal alignment of the baseplate.

⚠️ The max. misalignment is 0.5 mm/m baseplate length.

4.3.2 Steel foundation
When the pump unit is mounted directly on structural steel frame, it shall be well supported by structural beams. It is recommended to check the natural frequency of the steel frame, because it shall not coincide with the pump speed. The exact horizontal alignment is very important!

Ensure that the base plate is leveled horizontally to 0.5 mm/m. To avoid any distortion of put shims under the base plate before bolting it down to the steel frame. Welding of the base plate to the steel frame is not recommended because of possible distortion of the same.

4.3.3 Concrete foundation
A concrete foundation must have an exact horizontal alignment and must be placed on solid ground. First a basic foundation shall be built with square shaped holes for embedding the foundation bolts. After putting the base plate into the foundation the proper alignment can be obtained by adjusting it with shims under the base plate. Now insert the foundation bolts and grout the space between the basic foundation and the base plate with grouting cement (refer to illustration).

It is very helpful to use a properly made and stable wooden frame around the base plate. So the grouting cement will not flow side. When the grouting is totally set and hardened the foundation bolts shall be tightened in a firm and symmetrical way.
4.4 Initial alignment

The adjustment of motor and pump must be checked (if necessary, make a new adjustment) before first start up of the unit.

Ensure pump and driver are isolated electrically and the half couplings are disconnected.
Align the motor to the pump, not the pump to the motor. Alignment of the motor is achieved by using the adjustment screws.

4.4.1 Permissible misalignment limits at working temperature

When checking parallel alignment, the total indicator read-out (TIR) shown is twice the value of the actual shaft displacement.

The pump is only pre-aligned! Carefully check or read just alignment before start of the unit.
Take out the spacer of the coupling and check the alignment of shafts end of pump and driver. The maximum allowable angular offset should not exceed 0,05 degree, this means the alignment of the shaft ends should be 0,1 mm (0.004 in.). The maximum parallel offset should not exceed 0,05 mm (0.002 in.) and the axially offset can be ± 1 mm (0.04 in.).

For more details refer to the manufacturer’s instruction manual of coupling.

a) Angular Offset: The median lines of shafts intersect half-way between the ends of the two shafts.
b) Parallel Offset: The median lines run parallel. The maximum allowable parallel offset depends on the size of coupling and is indicated in the instruction manual of manufacturer of coupling
b) Axially Offset: Another offset is the displacement of one or both of the shafts. A typical example is thermal expansion.

How the alignment of the coupling should be done you can see on the sketches and explanations below!

a) Fix the dial gauge on the driven shaft and check the concentricity by turning of both hubs; correct it if necessary.
b) Fix the dial gauge on one of the hubs and check the uniformity of the distance by turning of both hubs.; correct it if necessary.
c) Fix the dial gauge on the driving shaft and check the concentricity by turning of both hubs; correct it if necessary.

If the pump is handling hot liquid, the alignment must be rechecked in warm condition of the unit. The alignment of the unit shall be checked again after 200 service hours.
4.5 Piping

4.5.1 General
Protective covers are fitted to the pipe connections to prevent foreign particles entering during transportation and installation. Ensure that these covers are removed from the pump before connecting any pipes.

Maximum forces and moments allowed on the pump flanges vary with the pump size and type. To minimize these forces and moments which may cause misalignment, hot bearings, worn couplings, vibration and a possible failure of the pump, the following points shall be strictly followed:

- Prevent excessive external pipe load.
- Do not connect piping by applying external force (use of wrenches, crane,...). Piping shall be aligned without residual stress.
- Do not mount expansion joints so that their force, due to internal pressure, acts on the pump flange.

Fitting an isolator and non-return valves can allow easier maintenance. Never throttle pump on suction side and never place a valve directly on the pump inlet nozzle.

A non-return valve shall be located in the discharge pipework to protect the pump from excessive back pressure and hence reverse rotation when the unit is stopped.

Piping and fittings shall be flushed before use. To avoid damages of the pump install a Y-strainer or a strainer of 40 mesh.

Piping for corrosive liquids shall be arranged to allow pump flushing before removal of a unit.

4.5.2 Vent
All ERPN-M pump casings provides self venting through top discharge nozzle arrangement. A small bore at the top of the seal chamber ensures venting of the same.

4.5.3 Drain
This connection is used for total drainage of the pump casing. A flanged drain is standard and can be optionally equipped with various kinds of valves. Refer to GA drawing for details of the drain connection.

- By pumping toxic or explosive media, provide the necessary security actions, e.g. flushing with nitrogen.

4.6 Electrical connections

Electrical connections must be made by a qualified Electrician in accordance with the relevant local national and international regulations.

- It is important to be aware of the EUROPEAN DIRECTIVE on hazardous areas where compliance with IEC60079-14 is an additional requirement for making electrical connections.

DANGER

It is important to be aware of the EUROPEAN DIRECTIVE on electromagnetic compatibility when wiring up and installing equipment on site. Attention must be paid to ensure that the techniques used during wiring/installation do not increase electromagnetic emissions or decrease the electromagnetic immunity of the equipment, wiring or any connected devices. If in any doubt contact Flowserve for advice.

By pumping toxic or explosive media, provide the necessary security actions, e.g. flushing with nitrogen.

DANGER

The motor must be wired up in accordance with the motor manufacturer's instructions (normally supplied within the terminal box) including any temperature, earth leakage, current and other protective devices as appropriate. The identification nameplate should be checked to ensure the power supply is appropriate.

- A device to provide emergency stopping must be fitted.

If not supplied pre-wired to the pump unit the controller/starter electrical details will also be supplied within the controller/starter.

For electrical details on pump sets with controllers see the separate wiring diagram.

CAUTION

See section 5.5, Direction of rotation before connecting the motor to the electrical supply.

4.7 Final shaft alignment check
After connecting piping to the pump, rotate the shaft several times by hand to ensure there is no seizure and all parts are free.

Recheck the coupling alignment, as previously described, to ensure no pipe strain. If pipe strain exists, correct piping.

5.0 COMMISSIONING START-UP, OPERATION AND SHUTDOWN

- These operations must be carried out by fully qualified personnel.
5.1 Precommissioning procedure
a) The bearing housing must be filled with the indicated oil. Check also the oil level.
b) The pump must be completely filled with liquid to avoid running dry and to guarantee a correct performance of the pump.
c) During filling the pump shall reach the specified temperature, so pumps for hot liquids (T > 100 °C (212 °F)) shall be warmed up by preflushing.
d) Check the sense of rotation of the pump (Coupling spacer dismantled).
 Sense of rotation is clockwise viewed to the drive end of the pump.
e) Check the readiness of all auxiliary systems (flushing sys., lubrication sys.,...) for start up.
f) All pipe work, including the internal and the auxiliary pipe work, must be connected correctly and must be absolutely tight. Check the tightness of all connections of the auxiliary pipe work. The suction valve must be open, the discharge valve shall be closed.
g) Turn the pump by hand, if required with the help of a lever, to check the free rotation of the rotor. The rotor must turn uniformly and noiselessly. Some resistance may be felt due to friction in bearings and seals.
h) Check the readiness of the driver for start up. Refer to the manual of the driver (preheating for explosion proof E-motor).

5.2 Pump Lubricants

5.2.1 Lubrication
The bearing housing shall be filled with proper lubricating oil prior to start up. If the pump will be started after a longer storage period, the bearing housing should be first flushed and cleaned with gasoline. It is not necessary to remove the preservation oil as this will mix up thoroughly with the lubrication oil.
Lubrication is provided by the pumping effect of the rotating ball bearings. Maintaining the correct oil level (middle of the oil sight glass) ensures that the lower ball bearing is covered with oil.
As option a 1/2" NPT connection for a purge oil mist lubrication is provided (refer to General Arrangement Drawing).
For recommended lubricating oils refer to the lubrication table 5.2.6

5.2.2 Purge oil mist lubrication
For preventing, that dirt or humidity get into the bearing housing, this pump is equipped with a 1/2" NPT connection for air or nitrogen supply.
Also at standstill the air or nitrogen supply shall be maintained.

5.2.3 Oil change
After first start up, the oil shall be changed after 200 service hours.
Every further oil change shall take place after about 2000 service hours or at least every 6 month.
To change the oil use the following procedure:
a) Remove the reservoir (for some type of oilers you must loose a fixing screw or lock nut, refer to section 5.2.4 Oil level).
b) Open the oil drain on the bearing housing to remove the oil.
c) Close the oil drain and fill in Oil through the oiler until the oil level reaches the bottom of the sight glass.
d) Fill the reservoir and put it quickly to the body of the oiler. Observe the level in the reservoir. It will decrease until the required oil level is reached (middle of the sight glass). Ensure that enough oil remains in the reservoir.
e) If necessary, the oil level can be adjusted by referring to section 5.2.4 Oil level.

5.2.4 Oil level
The correct oil level is in the middle of the oil sight glass and shall be checked when pump is not in operation. Periodically check if the lubricating oil is mixed with any condensed water. Careful opening of the oil drain during a stop of the pump will show any water.

Note: Use a spirit level to check the horizontal alignment of the bearing housing.
A too high oil level will result in higher bearing temperatures and therefore poorer lubrication.

5.2.4.1 Adjusting of ADAMS Constant Level Oiler
This design of Constant Oiler prevents the flooding of the bearing by means of the positive setting in the Oiler, thus maintaining the correct oil level at all times. When these Oilers are used on Ball or Roller bearings, the installation is the same as described below, excepting that the oil level in the bearing should never cover more than maximum above inside diameter of the outer race at its lowest point.
5.2.4.2 Adjusting of Denco Constant Level Oiler

If the pump is fitted with a Constant Level Oiler type "Denco", the correct oil level has to be checked after fitting the pump! Dimension a is the distance from the centerline of the pump to the minimum oil level (marks at the bearing housing).

a) The oil level may be "fine tuned" by turning the adjusting sleeve (3) and finally locked into position by tightening the lock nut (2). To replenish, the reservoir and adaptor (1) may be removed by sliding it out of the body, removing the adaptor and fill the reservoir. Fully reinserting the adaptor / reservoir into the body ensures the previously adjusted oil level is maintained. The oiler is equipped with an overflow tube to avoid a rise of the oil level. This is necessary to maintain a constant level in an oil bath lubrication system, where an oil mist is used as primary lubrication.

b) Additionally you can check the correct oiler adjustment by an oil sight glass (correct oil level is the middle of the oil sight glass).

<table>
<thead>
<tr>
<th>Size of Bearing Frame</th>
<th>Cylindrical roller bearing [476]</th>
<th>Angular contact ball bearing [477]</th>
<th>Dimension "a" mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NU 207</td>
<td>7306 BECB (J),(M)</td>
<td>28 (1.1)</td>
<td></td>
</tr>
<tr>
<td>2 NU 309</td>
<td>7309 BECB (J),(M)</td>
<td>40 (1.58)</td>
<td></td>
</tr>
<tr>
<td>3 NU 311</td>
<td>7311 BECB (J),(M)</td>
<td>49 (1.93)</td>
<td></td>
</tr>
<tr>
<td>4 NU 313</td>
<td>7313 BECB (J),(M)</td>
<td>57 (2.24)</td>
<td></td>
</tr>
<tr>
<td>5 NU 315</td>
<td>7315 BECB (J),(M)</td>
<td>65 (2.56)</td>
<td></td>
</tr>
<tr>
<td>6 NU 317</td>
<td>7317 BECB (J),(M)</td>
<td>72 (2.84)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The oiler is preadjusted with the distance sleeve [6], therefore no adjustment is required anymore.

Note: Refer to nameplate or part list, to reading the correct frame size.
5.2.4.3 Adjusting of TRICO Constant Level Oiler

If the pump is fitted with a Constant Level Oiler type „TRICO“, the correct oil level has to be checked after fitting the pump! Dimension a is the distance from the centerline of the pump to the minimum oil level (marks at the bearing housing).

1. To check quickly the correct oiler adjustment, measure the dimension x from the oiler-rim to the minimum oil level (lower mark at the bearing housing). After that check the dimension from the oiler rim to the adjusting screw and compare it with the dimension x, if required turn the adjusting nut with tolerances of plus 0 mm and minus 2 mm (see figure), and fix it.

2. Additionally you can check the correct oiler adjustment by an oil sight glass (minimum oil level is the middle of the oil sight glass).

5.2.5 Oil quality

Oil used for lubrication should only be of high quality. The viscosity of the oil at working temperature must be at least 10 cSt. The pouring point of the oil must be in accordance with the lowest expected temperature of the bearing housing during a stop of the pump. For recommended lubricating oils refer to the lubrication table.

Having selected the corresponding oil quality the actual oil temperature at the bearing housing must be checked after two service hours of the pump. Considering this measured oil temperature the actual viscosity must be determined by using the data sheet of the oil, to verify the minimum required viscosity of 10 cSt. Do not forget, the oil temperature in the bearing itself is about 10 °C (50 °F) higher than the oil temperature at the bearing housing. On the following table the oil viscosity is given at 40 °C (104 °F). Determining the correct lubricating oil one must take into consideration that all bearings will have higher temperatures during the first 20 service hours. In constant operation the bearing temperature will decrease about 10 °C (50 °F). The oil temperature shall be lower than 85 °C (185 °F) after this running-in time. If the temperature is higher, the reason may be a wrong oil quality, wrong oil level or overload of the pump because of excessive wear.

If the humidity at the site is high, the roller bearings become easily rusty during stand still periods. To avoid that, we recommend to mix the lubricating oil with a corrosion inhibitor contact your lubrication oil supplier for proper additives inhibitors.

5.2.6 Oil quantity – Frame I

Bearing size is shown on the name plate of the pump, and with this the correct thrust bearing frame can be selected according to the following table.
5.2.7 Oil quantity – Frame II
Bearing size is shown on the name plate of the pump, and with this the correct thrust bearing frame can be selected according to the following table.

<table>
<thead>
<tr>
<th>Bearing housing [470]</th>
<th>with Oiler [357]</th>
<th>without Oiler [357]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil quantity</td>
<td>0,62 l (21 Fl.oz.)</td>
<td>0,5 l (16.9 Fl.oz.)</td>
</tr>
</tbody>
</table>

5.2.8 Oil quantity – Frame III
Bearing size is shown on the name plate of the pump, and with this the correct thrust bearing frame can be selected according to the following table.

<table>
<thead>
<tr>
<th>Bearing housing [470]</th>
<th>with Oiler [357]</th>
<th>without Oiler [357]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil quantity</td>
<td>0,82 l (27.7 Fl.oz.)</td>
<td>0,7 l (23.7 Fl.oz.)</td>
</tr>
</tbody>
</table>

5.2.9 Oil quantity – Frame IV
Bearing size is shown on the name plate of the pump, and with this the correct thrust bearing frame can be selected according to the following table.

<table>
<thead>
<tr>
<th>Bearing housing [470]</th>
<th>with Oiler [357]</th>
<th>without Oiler [357]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil quantity</td>
<td>1,42 l (48 Fl.oz.)</td>
<td>1,3 l (43.9 Fl.oz.)</td>
</tr>
</tbody>
</table>
5.2.10 Lubrication Table

<table>
<thead>
<tr>
<th>Bearing temp.</th>
<th>+40 °C - +70 °C (+104 °F - +158 °F)</th>
<th>+70 °C - +100 °C (+158 °F - +212 °F)</th>
<th>+100 °C - +120 °C (+212 °F - +248 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temp.</td>
<td>-5 °C - +40 °C (-23 °F - +104 °F)</td>
<td>-5 °C - +40 °C (-23 °F - +104 °F)</td>
<td>-5 °C - +40 °C (-23 °F - +104 °F)</td>
</tr>
<tr>
<td>Mobil</td>
<td>MOBIL SHC 624 (synthetic) MOBIL DTE 24</td>
<td>32,41 311 Mobil DTE 27 95 Mobil SHC 629 (synthetic) 1431</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>Energol HLP-HM 32 Energol HLP-HM 46</td>
<td>321 461 Energol HLP-HM 100 941</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>Shell Turbo T 46 Shell Turbo T 100</td>
<td>491 Shell Morlina 220 220</td>
<td></td>
</tr>
<tr>
<td>Esso</td>
<td>TERESSO 32 TERESSO 46</td>
<td>301 431 NUTO 100 100 NUTO 220 220</td>
<td></td>
</tr>
<tr>
<td>Castrol</td>
<td>Hyspin AWS 32 Alpha SP 100</td>
<td>321 Alpha SP 220 Alphasyn T 150 (synthetic) 2201 1501</td>
<td></td>
</tr>
<tr>
<td>OMV</td>
<td>OMV turb HTU 46 OMV turb HTU 100</td>
<td>461 OMV turb HTU 460 460</td>
<td></td>
</tr>
<tr>
<td>Aral</td>
<td>Aral Degol BG 46 Aral Vitam GF 46</td>
<td>461 461 Aral Degol BG 100 100</td>
<td></td>
</tr>
</tbody>
</table>

For temperatures below -5 °C (-23 °F) use lubrication oil class SAE 5W-50 or API-SJ.

<table>
<thead>
<tr>
<th>Barrier/Buffer Fluid for Mech. Seal</th>
<th>Seal System / Pumped Liquid</th>
<th>Quench-Oil</th>
<th>General Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tandem Seal to -40 °C (-40 °F)</td>
<td>Tandem Seal to -40 °C (-40 °F)</td>
<td>- Raffinated Hydraulic Oil</td>
<td>appr. 10-15 cSt at 40°C (104 °F)</td>
</tr>
<tr>
<td>Back to back Seal with gascoffer-dam</td>
<td>Back to back Seal with gascoffer-dam</td>
<td>- Synthetic Oil</td>
<td>below -40°C (-40 °F)</td>
</tr>
<tr>
<td>Conventional back to back Seal</td>
<td>Conventional back to back Seal</td>
<td>- Mixture of water / glykol</td>
<td>Pourpoint vaporization above 80°C (176 °F)</td>
</tr>
<tr>
<td>ATTENTION: Do not use Methanol</td>
<td>ATTENTION: Do not use Methanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol/Propanol</td>
<td>Ethanol/Propanol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sequence of the suppliers of the lubricants does not represent any indication of their superiority.

¹ Viscosity at 40 °C (104 °F) in cSt [mm²/s] DIN 51562
5.3 Impeller clearance
No axial adjustment of the rotor is necessary.

5.4 Direction of rotation

⚠️ CAUTION ⚠️
The sense of rotation of the pump is clockwise (CW); looking from the coupling to the shaft end of the pump.

⚠️ The rotation of the driver shall be checked.

5.5 Guarding
Be sure that the coupling guard is mounted correctly at the baseplate prior to start up.

5.6 Priming and auxiliary supplies
The pump must be completely primed prior to start up.

a) The pump casing is considered as self venting, so no vent connections are provided.

b) Auxiliary systems, e.g. barrier /buffer fluid systems, cooling circuits, shall be filled according to the user instructions.

5.7 Starting the pump

a) Start the driver according to the specification. (Refer to driver IOM).

⚠️ Pumps are usually started against closed discharge valve.

b) Check the discharge and suction pressure gauge to verify the pumps delivered head. Open the discharge valve slowly, until the pump reaches the specified operation point. The pump must operate smoothly, and the vibration must be below 3 mm/s (0.2 in./sec) (API 610 vibration limits).

⚠️ The discharge valve must be opened within 10 sec. after start up. Longer operation against closed discharge valve will damage the pump. If a minimum flow valve is installed, take pressure gauge readings to verify the correct operation.

⚠️ If the backpressure of the discharge pipe is sufficient, pumps can be started against open valve.

⚠️ Ensure that your driver is capable deliver the higher torque required by starting against open valve.

⚠️ To prevent the pump from reverse rotation after shut down, the installation of a check valve is recommended. Check the discharge and suction pressure gauge to verify the pumps delivered head. The pump must operate smoothly, and the vibration must be below 3 mm/s (0.2 in./sec) (API 610 vibration limits). If a minimum flow valve is installed, take pressure gauge readings to verify the correct operation.

c) Check the pipe system against any leakage.

d) Check the magnetic coupling against any leakage.

Note: Check temperature of the can to avoid damage of the Silicon Carbide bearings.

5.8 Operation

a) Verify that the pump is operating within the specified limits, min/max flow, pressure, temperature, vibration, power

b) The bearing housing temperature shall not exceed 80 °C (176 °F). If higher bearing temperature are observed, check the viscosity grade of the used lubrication oil.

⚠️ CAUTION ⚠️
The minimum viscosity is 10 cSt at the expected oil temperature. (Oil temperature = bearing gland temperature + 10 °C (+50 °F))

c) Check if the temperature monitoring system is working correctly. It is essential that any abnormal temperature increase is detected immediately. (The max. temperature shall not exceed the fluid temperature +20 °C (+68 °F)). Therefore we strictly recommend to include the temperature monitoring system into your process control.

d) Observe the power consumption of the pump to detect excessive wear.

5.9 Stopping and Shutdown

a) Close the outlet valve, but ensure that the pump runs in this condition for no more than a few seconds.

b) Stop the pump.

c) Switch off flushing and/or cooling/ heating liquid supplies at a time appropriate to the process.

d) For prolonged shut-downs and especially when ambient temperatures are likely to drop below freezing point, the pump and any cooling and flushing arrangements must be drained or otherwise protected.

Note: For automatic start/stop operation of the pump, ensure that all steps described in chapter 5.6, 5.7, 5.8 and 5.9 are implemented in the control logic.
5.10 Hydraulic, mechanical and electrical duty

This product has been supplied to meet the performance specifications of your purchase order, however it is understood that during the life of the product these may change. The following notes will help the user to decide how to evaluate the implications of any change. If in doubt contact your nearest Flowserve office.

5.10.1 Specific gravity (SG)

Pump capacity and total head in meters (feet) do not change with SG, however pressure displayed on a pressure gauge is directly proportional to SG. Power absorbed is also directly proportional to SG. It is therefore important to check that any change in SG will not overload the pump driver or over-pressurize the pump.

5.10.2 Viscosity

For a given flow rate the total head reduces with increased viscosity and increases with reduced viscosity. Also for a given flow rate the power absorbed increases with increased viscosity, and reduces with reduced viscosity. It is important that checks are made with your nearest Flowserve office if changes in viscosity are planned.

5.10.3 Pump speed

Changing pump speed effects flow, total head, power absorbed, \(NPSHR \), noise and vibration. Flow varies in direct proportion to pump speed. Head varies as speed ratio squared. Power varies as speed ratio cubed. If increasing speed it is important therefore to ensure the maximum pump working pressure is not exceeded, the driver is not overloaded, \(NPSHA > NPSHR \), and that noise and vibration are within local requirements and regulations.

5.10.4 Net positive suction head (NPSHA)

NPSH available (NPSHA) is a measure of the energy available in the pumped liquid, above its vapour pressure, at the pump suction branch. NPSH required (NPSHR) is a measure of the energy required in the pumped liquid, above its vapour pressure, to prevent the pump from cavitating. It is important that \(NPSHA > NPSHR \). The margin between \(NPSHA > NPSHR \) should be as large as possible. If any change in NPSHA is proposed, ensure these margins are not significantly eroded. Refer to the pump performance curve to determine exact requirements particularly if flow has changed. If in doubt please consult your nearest Flowserve office for advise and details of the minimum allowable margin for your application.

5.10.5 Pumped flow

Flow must not fall outside the minimum and maximum continuous safe flow shown on the pump performance curve and/or data sheet.

6.0 MAINTENANCE

6.1 General

⚠️ It is the plant operator's responsibility to ensure that all maintenance, inspection and assembly work is carried out by authorized and qualified personnel who have adequately familiarized themselves with the subject matter by studying this manual in detail. (See also section 1.6.2.)

Any work on the machine must be performed when it is at a standstill. It is imperative that the procedure for shutting down the machine is followed, as described in section 5.9.

On completion of work all guards and safety devices must be re-installed and made operative again.

Before restarting the machine, the relevant instructions listed in section 5, Commissioning, start up, operation and shut down must be observed.

Oil and grease leaks may make the ground slippery. Machine maintenance must always begin and finish by cleaning the ground and the exterior of the machine.

If platforms, stairs and guard rails are required for maintenance, they must be placed for easy access to areas where maintenance and inspection are to be carried out. The positioning of these accessories must not limit access or hinder the lifting of the part to be serviced.

When air or compressed inert gas is used in the maintenance process, the operator and anyone in the vicinity must be careful and have the appropriate protection.

Do not spray air or compressed inert gas on skin.

Do not direct an air or gas jet towards other people.

Never use air or compressed inert gas to clean clothes.

Before working on the pump, take measures to prevent an uncontrolled start. Put a warning board on the starting device with the words: ”Machine under repair: do not start”.
With electric drive equipment, lock the main switch open and withdraw any fuses. Put a warning board on the fuse box or main switch with the words: "Machine under repair: do not connect".

Never clean equipment with inflammable solvents or carbon tetrachloride. Protect yourself against toxic fumes when using cleaning agents.

6.2 Maintenance schedule

It is recommended that a maintenance plan and schedule is adopted, in line with these User Instructions, to include the following:

a) Any auxiliary systems installed must be monitored, if necessary, to ensure they function correctly.
b) Check for any leaks from gaskets and seals. The correct functioning of the magnetic coupling must be checked regularly.
c) Check bearing lubricant level, and if the hours run show a lubricant change is required.
d) Check that the duty condition is in the safe operating range for the pump.
e) Check vibration, noise level and surface temperature at the bearings to confirm satisfactory operation.
f) Check dirt and dust is removed from areas around close clearances, bearing housings and motors.
h) Check coupling alignment and re-align if necessary.

Our specialist service personnel can help with preventative maintenance records and provide condition monitoring for temperature and vibration to identify the onset of potential problems.

If any problems are found the following sequence of actions should take place:

a) Refer to section 8, Faults; causes and remedies, for fault diagnosis.
b) Ensure equipment complies with the recommendations in this manual.
c) Contact Flowserve if the problem persists.

6.2.1 Routine Inspection (daily/weekly)

The following checks should be made and the appropriate action taken to remedy any deviations.

a) Check operating behavior; ensure noise, vibration and bearing temperatures are normal.
b) Check that there are no abnormal fluid or lubricant leaks (static and dynamic seals) and that any sealant systems (if fitted) are full and operating normally.
c) Check that shaft seal leaks are within acceptable limits.

d) Check the level and condition of lubrication oil. On grease lubricated pumps, check running hours since last recharge of grease or complete grease change.
e) Check any auxiliary supplies eg, heating/cooling (if fitted) are operating correctly.
f) Refer to the manuals of any associated equipment if routine checks needed.

6.2.2 Periodic Inspection (every 6 Month)

a) Check foundation bolts for security of attachment and corrosion.
b) Check pump operation hours to determine if bearing lubricant shall be changed.
c) The coupling should be checked for correct alignment and worn driving elements.

Refer to the manuals of any associated equipment for periodic checks needed.

6.3 Spare parts

6.3.1 Ordering of spares

When ordering spare parts we need the following information:

1. pump type and pump size
2. serial number of the pump
3. number of the required spare parts
4. reference number and name of the part as listed in the part list or in the sectional drawing

Example: for ERPN-M pump:

ERPN-M 150-200, serial number G202222/01
1 piece impeller Pos. 425

The serial number of each pump is indicated on the name plate. If the material should be changed from the original delivered one, additionally indicate the exact material specification. If ordered impellers shall have smaller or larger outer diameter, indicate also with your order. Without a special remark the spare impellers will be delivered with the diameter of the original impellers.

If you need the wear rings oversized or undersized, please indicate, otherwise the wear rings will be delivered with standard size.

To ensure continuous satisfactory operation, replacement parts to the original design specification should be obtained from Flowserve.

Any change to the original design specification (modification or use of a non-standard parts) will invalidate the pump's safety certification.
6.3.2 Storage of spares

Spares should be stored in a clean dry area away from vibration. Inspection and retreatment of metallic surfaces (if necessary) with preservative is recommended at a 6 monthly interval.
6.4 Recommended spares

<table>
<thead>
<tr>
<th>Part</th>
<th>Spares Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start up</td>
</tr>
<tr>
<td>No. of identical pumps</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Case</td>
<td></td>
</tr>
<tr>
<td>Head (case cover and stuffing box)</td>
<td></td>
</tr>
<tr>
<td>Bearing housing</td>
<td></td>
</tr>
<tr>
<td>Shaft (w/key)</td>
<td>1</td>
</tr>
<tr>
<td>Impeller</td>
<td>1</td>
</tr>
<tr>
<td>Wear rings (set)</td>
<td>1</td>
</tr>
<tr>
<td>Bearings complete (antifriction,radial)</td>
<td>1</td>
</tr>
<tr>
<td>Bearings complete (antifriction,thrust)</td>
<td>1</td>
</tr>
<tr>
<td>Magnetic Coupling</td>
<td></td>
</tr>
<tr>
<td>Secondary seal</td>
<td>1</td>
</tr>
<tr>
<td>Gaskets, O-rings (set)</td>
<td>1</td>
</tr>
</tbody>
</table>

6.5 Fastener torques

<table>
<thead>
<tr>
<th>Size of screw</th>
<th>Tightening torque M<sub>N</sub> Nm (lbf.ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 4</td>
<td>2 (1,5)</td>
</tr>
<tr>
<td>M 5</td>
<td>3,9 (2,9)</td>
</tr>
<tr>
<td>M 6</td>
<td>6,6 (5)</td>
</tr>
<tr>
<td>M 8</td>
<td>16,2 (12)</td>
</tr>
<tr>
<td>M 10</td>
<td>31,9 (23,6)</td>
</tr>
<tr>
<td>M 12</td>
<td>55,4 (40,9)</td>
</tr>
<tr>
<td>M 14</td>
<td>87,9 (64,9)</td>
</tr>
<tr>
<td>M 16</td>
<td>134,6 (99,3)</td>
</tr>
<tr>
<td>M 18</td>
<td>188 (139)</td>
</tr>
<tr>
<td>M 20</td>
<td>263 (194)</td>
</tr>
<tr>
<td>M 22</td>
<td>353 (260)</td>
</tr>
<tr>
<td>M 24</td>
<td>453 (334)</td>
</tr>
<tr>
<td>M 27</td>
<td>654 (483)</td>
</tr>
<tr>
<td>M 30</td>
<td>892 (658)</td>
</tr>
<tr>
<td>M 33</td>
<td>1200 (886)</td>
</tr>
<tr>
<td>M 36</td>
<td>1550 (1144)</td>
</tr>
<tr>
<td>M 39</td>
<td>1988 (1467)</td>
</tr>
<tr>
<td>M 42</td>
<td>2472 (1824)</td>
</tr>
<tr>
<td>M 45</td>
<td>3061 (2259)</td>
</tr>
<tr>
<td>M 48</td>
<td>3703 (2732)</td>
</tr>
<tr>
<td>M 64</td>
<td>8862 (6539)</td>
</tr>
</tbody>
</table>

Above mentioned torques are for all screwed unions, which works under dynamical load. For all other connections you can use a corresponding smaller torque.
6.6 Setting impeller clearance
No axial adjustment of the rotor is necessary.

6.7 Disassembly

![Warning]
Refer to section 1.6, Safety, before dismantling the pump.

![Warning]
Before dismantling the pump for overhaul, ensure genuine Flowserve replacement parts are available. Refer to sectional drawings for part numbers and identification.

6.7.1 Dismantling of pump

1) Completely drain the pump by using the drain connection. By pumping explosive or toxic media, flush your system with Nitrogen.
2) Remove coupling guard and uncouple the pump from the motor. Pull off the coupling hub from the pump shaft [415] and take out the key [422].

![Warning]
Ensure that the motor is locked against start up.

Note: If applied pull off the vane.
3) Drain the oil from the bearing housing, using the drain connection [206]. If required disconnect all auxiliary pipings and auxiliary devices like vibration probes, temperature probes, etc.
4) Loose hex nuts [0291] at the pump casing and the hex nuts of the wobble plate [488] for the baseplate. Now you can pull out the complete pump assembly from its casing.

Note: Larger pumps are equipped with jack screws [306] to pull out the pump assembly.

![Warning]
Be sure that the two pins [044] are screwed in the casing for guiding the outer rotor assembly during pulling off.

6.7.2 Dismantling of the outer rotor

1) Take out the casing gasket [398] located between the secondary containment [471] and the pump casing cover [470].

Note: The casing gasket [398] shall be renewed after each disassembly. Now the outer rotor can be dismantled.
2) Remove retaining ring for shaft [4651] and pull outer rotor of magnetic coupling [M02] inclusive driving flange [465] from driving shaft [415].

![Warning]
Pay attention that the magnets of outer rotor [M02] will not be damaged. Afterwards remove keys [423].
3) Loose socket screws [021] to separate mechanical seal unit from barrel [471] and pull it of the driving shaft [415].
5) Furthermore pull off shaft sleeve [509] with O-ring [450] and whole rotating unit of mechanical seal [G04, G05, G06, G07] from driving shaft [415].
6) Next loose the hex nuts [035] of studs [034] and separate bearing housing [470] from barrel [471].

![Warning]
Pay attention to O-ring [494] which has to be renewed after every dismantling to assure security of pump.
7) Now line bearing cover [478] together with shaft seal [4781] can be separated from barrel [471] by loosening the socket screws [021]. Check whether the guard ring is worn and has to be changed.
8) Loose hex screw [031] from thrust bearing cover [479] and pull it together with O-ring [493] and labyrinth-type seal [4791] from bearing housing [4791] respectively from driving shaft [415].
9) Now you can carefully pull driving shaft [415] inclusive cylindrical roller bearing [476], deep groove ball bearing [477], locking plate [464] and locking nut [463] towards coupling hub out of bearing housing [470].
10) Bend locking plate [464] and loose locking nut [463] from shaft.
11) Pull off deep groove ball bearing [477] from driving shaft [415] with the aid of a puller and check whether the inner ring of cylindrical roller bearing has to be renewed, too. There are two possibilities to remove it from driving shaft [415]. Heat up inner ring uniformly by welding torch or blowtorch until it slips from shaft. Take care that the shaft stays as cold as possible because otherwise it will get distorted. Transport the shaft to a work bench and turn the inner ring from shaft if there is no other possibility to remove it.
12) Squeeze roller bearing [476] without inner ring out of bearing housing [470].
13) Check retaining ring for bore [4761] against any damage.

<table>
<thead>
<tr>
<th>Frame</th>
<th>Thrust bearing</th>
<th>Line bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6306 – C3</td>
<td>NU 207</td>
</tr>
<tr>
<td>2</td>
<td>6306 – C3</td>
<td>NU 207</td>
</tr>
<tr>
<td>3</td>
<td>6309 – C3</td>
<td>NU 209</td>
</tr>
<tr>
<td>4</td>
<td>6309 – C3</td>
<td>NU 209</td>
</tr>
</tbody>
</table>
6.7.3 Dismantling of the inner rotor

1) Loose both socket screws [042] and pull out casing cover inclusive inner rotor [M01] of magnet coupling, impeller shaft [417] and impeller [425] out of pump casing [360].

2) Remove casing gasket [398] from pump casing [360]. The casing gasket [398] shall be renewed after each disassembly. Now the inner rotor can be dismantled.

3) Place inner rotor assembly vertically on impeller [425] and unscrew socket screw [043] and pull off can [M03] upwards and then remove O-ring [507] from casing cover [370].

4) Unscrew socket screw [M08] and pull carefully the inner rotor [M01] from axial bearing [M06].

5) Now detach the non-positive connections of locking plate [4174], screw hex screw out of shaft [417] and remove locking plate [4172] and washer [4172]. Take care of inner rotor [M01] of magnetic coupling so that the magnets will not be damaged.

6) Loosen socket screw [041] to pull radial bearing [M04], axial bearings [M05] and [M06], shaft sleeve [M07] from shaft [417] respectively casing cover [370].

8) Unsecure locking plate [454] and loose impeller nut [456] (right hand thread).

Note: Pumps having a screwed inducer have no impeller nut. Therefore loose the inducer. Pumps having a slipped on inducer, the socket screw [456] must be loosed.

9) Pull off the impeller [425] from its shaft [415]. Remove key [416].

Note: By pumps having a slipped on inducer, the inducer must be pulled off first.

6.8 Examination of parts

1) Check the casing wear ring and the impeller wear ring against any wear. The diametrical clearance between the rings must not exceed twice the value in new condition. Pumps with semi open impeller have no wear rings. Check the wear plate and the impeller [425] against any wear. Semi open and free flow impellers have back vanes, which shall be checked against any wear.

2) Check all parts against corrosion and erosion.

3) Carefully check the coupling against any wear.

4) Rotate the angular contact bearing by hand, to check against abnormal sound. Check the bearing cages against any wear and the outer and inner race against running marks. Check the runout of the shafts. TIR (Total Indicated Runout) shall not exceed 0.04 mm/m (0.0005 in./ft) of length. TIR shall not exceed 0.08 mm (0.003 in.) over total shaft length.

5) Check the clearance between guard ring [4711] and outer rotor [M02]. Max. allowable diametrical clearance is 2 mm (0.08 in.), 1 mm (0.04 in.) in new condition.

6.8.1 Gap at closed impeller – ERPN-M

The diametrical gap between wear rings [367] and [433] in assembled condition is:

<table>
<thead>
<tr>
<th>Pump size</th>
<th>Wear ring diameter mm (in.)</th>
<th>Diometrical clearances mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-125</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>25-160</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>25-200</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>32-125</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>32-160</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>32-200</td>
<td>78 (3.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>40-125</td>
<td>90 (3.5)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>40-160</td>
<td>90 (3.5)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>40-200</td>
<td>105 (4.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>50-125</td>
<td>95 (3.7)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>50-160</td>
<td>105 (4.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>50-200</td>
<td>105 (4.1)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>65-125</td>
<td>114 (4.5)</td>
<td>0.3 (0.012)</td>
</tr>
<tr>
<td>65-160</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>65-200</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>65-250</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>80-160</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>80-200</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>100-200</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-204</td>
<td>176 (6.9)</td>
<td>0.25 (0.010)</td>
</tr>
<tr>
<td>125-250</td>
<td>179 (7.1)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-319</td>
<td>184 (7.2)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-404</td>
<td>184 (7.2)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>150-250</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>150-254</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>150-319</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>200-254</td>
<td>242 (9.5)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>50-380</td>
<td>124 (4.9)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>65-400</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>80-400</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>100-250</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>100-404</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-254</td>
<td>179 (7.1)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-319</td>
<td>184 (7.2)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>125-404</td>
<td>184 (7.2)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>150-250</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>150-254</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>150-319</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>200-254</td>
<td>242 (9.5)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>50-380</td>
<td>124 (4.9)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>65-400</td>
<td>138 (5.4)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>80-400</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>100-315</td>
<td>169 (6.7)</td>
<td>0.35 (0.014)</td>
</tr>
<tr>
<td>150-315</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>150-404</td>
<td>225 (8.9)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>200-250</td>
<td>235 (9.3)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>200-319</td>
<td>256 (10.1)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>200-404</td>
<td>256 (10.1)</td>
<td>0.4 (0.016)</td>
</tr>
<tr>
<td>250-319</td>
<td>300 (11.8)</td>
<td>0.4 (0.016)</td>
</tr>
</tbody>
</table>
6.8.2 Gap at free flow impeller – ERPN-M – F

Diametrical gap between vane on the back of impeller [425] and casing cover [370] in assembled condition: 1 mm \([0.04 \text{ in.}]\).

Diametrical gap between vane on the front of impeller [425] and pump casing [360] depends on the width of pump casing spiral as impeller is located outside and a quarter of width of impeller outlet extend into spiral at most.

6.8.3 Gap at open impeller – ERPN-M – O

Diametrical gap between vane on the back of impeller [425] and casing cover [370] in assembled condition: 1 mm \([0.04 \text{ in.}]\).

Diametrical gap between vane on the front of impeller and pump casing [360] in assembled condition: 1mm \([0.04 \text{ in.}]\).

6.9 Assembly

To assemble the pump consult the sectional drawings, see section 8, *Parts list and drawings*.

Ensure threads, gasket and O-ring mating faces are clean. Apply thread sealant to non-face sealing pipe thread fittings.

6.9.1 Assembly of the inner rotor

1) Slip on the casing cover [370] and insert key [416] into the keyway. Slip on impeller [425] and locking plate [454] to the shaft [415]. Fasten the impeller with the impeller nut [456] and secure it with the locking plate [454].

Note: Pumps having a screwed inducer, have no impeller nut. Therefore fasten the impeller with the inducer. Pumps having a slipped on inducer are fastened by using the socket screw [456].

3) Now fix radial bearing [M04] on casing cover [370] by socket screws [041] so that longitudinal groove of inner diameter lies approximately in horizontal line (vertically to resulting radial forces). Arrangement of screws allow that the bearing can only be mounted in this position.

5) Put the key [418] into shaft groove and push axial bearing [M06] on impeller shaft [417] where it is fixed and secured by a washer [4172] and a hex screw [4171].

CAUTION Prestress bearing parts always in a vertical shaft position. Turn torque constantly and uninterruptedly. Beats are prohibited. The impeller shaft should turn easily when supported at casing cover [370].

6) Now push inner rotor [M01] of magnetic coupling on axial bearing [M06]. The two cylindrical pins [M09] have to gear into the corresponding bores for guidance.

7) Fix the inner rotor [M01] by socket screws [M08]. Secure these screws by Loctite.

8) Put new gasket [507] into casing cover [370]. Push can [M03] over the inner rotor [M01] and screw it on casing cover [370] by socket screws [043].

CAUTION Pay attention to circulation bores which ensure an automatically vent and outflow by a free flow.

After all above mentioned steps lift complete driver unit into pump casing [360] and fix it by socket screws [042]. Pay attention that there is a new O-ring [398] in pump casing. Pay attention to correct position of casing cover [370] to pump casing [360] for assembling, too.

9) Put gasket [398] into the foreseen groove of pump casing [360]. Now lift the complete "back-pull out" assembly by crane and push it into the pump casing [360].

Note: The casing gasket [398] shall be renewed after each disassembly.

10) Fasten crosswise the socket screws [042].

CAUTION Take care that the pump casing cover can [370] is connected to the pump casing [360] in correct position.

6.9.2 Assembly of the outer rotor

1) Heat up the angular contact bearings [477] and push it on the shaft [415] as shown in the section drawing. Put on locking plate [464] and fix the thrust bearing with the shaft nut [463] and secure it by the locking plate.
2) Heat up the inner race of the roller bearing [476] and push it on the shaft [415].
5) Put in the labyrinth type seal [4791] into thrust bearing cover [479].

Note: Take care that the oil return slot of the bearing cover is at the bottom and one slot of the labyrinth ring meets the oil return slot.
6) Check if the rotor can be turned by hand.
7) Turn complete unit by 180°, so that shaft end shows downwards and bearing housing [470] with thrust bearing cover [479] lies on the workbench.
8) Put gasket [495] into barrel [471] and mount line bearing cover [478] by socket screws [021].

Note: Do not forget to put shaft seal into line bearing cover [478].
9) Put new O-ring [494] into groove of bearing housing [470] and pull the pre-mounted barrel [471] through the impeller shaft [415] over the bearing housing [470] and bolt the two casings together by studs [034] and hex nuts [035].
10) Now put key [423] into the keyway and driving flange [465] inclusive outer rotor [M02] secured by socket screws [045] on driving shaft [415] and fix it with retaining ring for shaft [4651].

CAUTION Pay attention that guard ring [4711] is pressed in barrel [471] and the gasket [398] is assembled.
11) Now lift complete pre-mounted outer rotor slowly by crane on the pre-mounted inner rotor of pump with the aid of cylindrical pins [044] which are screwed into the pump casing [360].

CAUTION The outer rotor [M02] of magnetic coupling must not touch can, [M03] otherwise the magnets will be destroyed.

Note: Pay attention to hex screw [036] so that they do not block assembly of pump. For torques refer to section 6.5 Fastener torques.
12) Check whether you can turn rotor by hand. Fit the „Constant Level“ oiler and fill oil into bearing housing.

Note: For correct oil level and adjustment refer to section 5.2.1, Lubrication.

<table>
<thead>
<tr>
<th>Frame</th>
<th>Thrust bearing</th>
<th>Line bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6306 – C3</td>
<td>NU 207</td>
</tr>
<tr>
<td>2</td>
<td>6306 – C3</td>
<td>NU 207</td>
</tr>
<tr>
<td>3</td>
<td>6309 – C3</td>
<td>NU 209</td>
</tr>
<tr>
<td>4</td>
<td>6309 – C3</td>
<td>NU 209</td>
</tr>
</tbody>
</table>

7.0 AUXILIARIES

7.1 Secondary Seal
The pump is equipped with a secondary containment seal. This can be a non-contacting lip seal or a non-contacting dry gas seal (refer to sectional drawing). The purpose of this seal is to avoid leakage to atmosphere in case of a failure of the magnetic coupling.

During normal operation the barrel [471] is exposed to atmospheric pressure, in case of failure of the magnetic coupling the barrel will be pressurized and non-contacting seal will close.

Note: We strictly recommend to install a pressure switch, which shut down the pump in case a pressure is build up in the barrel. This avoids further damage of the pump and the secondary seal seals against static pressure only.

7.2 Changing of secondary seal
Refer to section 6.7.2, Dismantling of the outer rotor, and section 6.9.2, Assembly of the outer rotor.

7.3 Seal and seal systems

7.3.1 Flushing plan no. 1S according to API 685
Flushing of magnetic coupling is performed according to API 685 flushing plan no.1S. Thereby the pumped medium is led to the magnetic coupling internally from higher pressure side through a small hole in casing cover [370].

Flushing medium circulates through magnetic coupling and enters afterwards into pump casing, into the space behind impeller, (low pressure). Circulation is necessary for lubricating the bearings and for eliminating heat caused by the eddy current losses.

7.3.2 Flushing plan no. 11S according to API 685
Flushing of magnetic coupling is performed according to API 685 flushing plan no.11S. Thereby the pumped medium is led to magnetic coupling (connection „F”) from pump discharge through an orifice.

Flushing medium circulates through magnetic coupling and enters afterwards into pump casing, into the space behind impeller, (low pressure). Circulation is necessary for lubricating the bearings and for eliminating heat caused by the eddy current losses.
7.3.3 Flushing plan no. 21S according to API 685
Flushing of magnetic coupling is performed according to API 685 flushing plan no.21S. Thereby the pumped medium is led to magnetic coupling (connection „F“) from pump discharge through an orifice and a cooler. Flushing medium circulates through magnetic coupling and enters afterwards into pump casing, into the space behind impeller, (low pressure). Circulation is necessary for lubricating the bearings and for eliminating heat caused by the eddy current losses.

7.3.4 Flushing plan no. 31S according to API 685
Flushing of magnetic coupling is performed according to API 685 flushing plan no.31S. Thereby the pumped medium is led to magnetic coupling (connection „F“) from pump discharge through a cyclone separator. The cyclone separator separates the solids content from the pumped medium and returns them to suction. Clean flushing medium circulates through magnetic coupling and enters afterwards into pump casing, into the space behind impeller, (low pressure). Circulation is necessary for lubricating the bearings and for eliminating heat caused by the eddy current losses.

7.3.5 Flushing plan no. 31SE according to API 685
Flushing of magnetic coupling is performed according to API 685 flushing plan no.31SE. Thereby the pumped medium is led to magnetic coupling (connection „F“) from pump discharge through a cyclone separator and a magnetic separator. The cyclone separator separates the solids content from pumped medium and returns them to suction. The cleaned flushing medium runs afterwards through the magnetic separator, which separates even the smallest metallic parts from the medium. Cleaning of magnetic separator should be done regularly independently from contamination of medium. Clean flushing medium circulates through magnetic coupling and enters afterwards into pump casing, into the space behind impeller, (low pressure). Circulation is necessary for lubricating the bearings and for eliminating heat caused by the eddy current losses.
8.0 FAULTS; CAUSES AND REMEDIES

FAULT SYMPTOM

<table>
<thead>
<tr>
<th>FAULT SYMPTOM</th>
<th>PROBABLE CAUSES</th>
<th>POSSIBLE REMEDIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump overheats and seizes</td>
<td>• Pump not primed.</td>
<td>Check complete filling</td>
</tr>
<tr>
<td></td>
<td>• Pump or suction pipe not completely filled with liquid.</td>
<td>Check and complete filling</td>
</tr>
<tr>
<td></td>
<td>• Suction lift too high or level too low.</td>
<td>Check NPSHa>NPSHr, proper submergence, losses at strainers / fittings</td>
</tr>
<tr>
<td></td>
<td>• Excessive amount of air or gas in liquid.</td>
<td>Check and purge from pipes</td>
</tr>
<tr>
<td></td>
<td>• Air or vapour pocket in suction line.</td>
<td>Check suction line design for pockets</td>
</tr>
<tr>
<td></td>
<td>• Air leaks into suction line.</td>
<td>Check airtight pipe then joints and gaskets</td>
</tr>
<tr>
<td></td>
<td>• Foot valve too small.</td>
<td>Investigate replacing the foot valve</td>
</tr>
<tr>
<td></td>
<td>• Foot valve partially clogged.</td>
<td>Clean foot valve</td>
</tr>
<tr>
<td></td>
<td>• Inlet of suction pipe insufficiently submerged.</td>
<td>Check cut out system design</td>
</tr>
<tr>
<td></td>
<td>• Total head of system higher than differential head of pump.</td>
<td>Check discharge head and head losses in discharge pipe at the valve settings. Check back pressure is not too high</td>
</tr>
<tr>
<td></td>
<td>• Total head of system lower than pump design head.</td>
<td>Throttle at discharge valve or ask Flowserve if the impeller can be trimmed</td>
</tr>
<tr>
<td></td>
<td>• Specific gravity of liquid different from design.</td>
<td>Consult Flowserve</td>
</tr>
<tr>
<td></td>
<td>• Viscosity of liquid differs from that for which designed.</td>
<td>Consult Flowserve</td>
</tr>
<tr>
<td></td>
<td>• Operation at very low capacity.</td>
<td>Measure value and check minimum permitted</td>
</tr>
<tr>
<td></td>
<td>• Operation at high capacity.</td>
<td>Measure value and check maximum permitted</td>
</tr>
</tbody>
</table>

A. SYSTEM TROUBLES

- Misalignment due to pipe strain. Check the flange connections and eliminate strains using elastic couplings or a method permitted
- Improperly designed foundation. Check setting of baseplate: tighten, adjust, grout base as required
- Shaft bent. Check shaft runouts within acceptable values
- Rotating part rubbing on stationary part internally. Check for signs of this and consult Flowserve if necessary
- Bearings worn Replace bearings
- Wearing ring surfaces worn. Replace worn wear ring/ surfaces
- Impeller damaged or eroded. Replace impeller and check reason
- Leakage under sleeve due to joint failure. Replace joint and check for damage
- Magnetic coupling improperly installed. Check alignment of faces or damaged parts and assembly method used

B. MECHANICAL TROUBLES
Fault Symptom

<table>
<thead>
<tr>
<th>Pump overheats and seizing</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄 Bearings have short life</td>
</tr>
<tr>
<td>🔄 Pump vibrates or is noisy</td>
</tr>
<tr>
<td>🔄 Magnetic coupling has short life</td>
</tr>
<tr>
<td>🔄 Magnetic coupling leaks excessively</td>
</tr>
<tr>
<td>🔄 Pump requires excessive power</td>
</tr>
<tr>
<td>🔄 Pump loses prime after starting</td>
</tr>
<tr>
<td>🔄 Insufficient pressure developed</td>
</tr>
<tr>
<td>🔄 Insufficient capacity delivered</td>
</tr>
<tr>
<td>🔄 Pump does not deliver liquid</td>
</tr>
</tbody>
</table>

Probable Causes

<table>
<thead>
<tr>
<th>Probable Causes</th>
<th>Possible Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect type of magnetic coupling for operating conditions.</td>
<td>Consult Flowserve</td>
</tr>
<tr>
<td>Shaft running off centre because of worn bearings or misalignment.</td>
<td>Check misalignment and correct if necessary. If alignment satisfactory check bearings for excessive wear</td>
</tr>
<tr>
<td>Impeller out of balance resulting in vibration.</td>
<td>Check and consult Flowserve</td>
</tr>
<tr>
<td>Abrasive solids in liquid pumped.</td>
<td>Check and consult Flowserve</td>
</tr>
<tr>
<td>Magnetic coupling was run dry.</td>
<td>Check mechanical seal condition and source of dry running and repair</td>
</tr>
<tr>
<td>Internal misalignment due to improper repairs causing impeller to rub.</td>
<td>Check method of assembly, possible damage or state of cleanliness during assembly</td>
</tr>
<tr>
<td>Excessive thrust caused by a mechanical failure inside the pump.</td>
<td>Check wear condition of Impeller, its clearances and liquid passages</td>
</tr>
<tr>
<td>Excessive grease in ball bearings.</td>
<td>Check method of regreasing</td>
</tr>
<tr>
<td>Lack of lubrication for bearings.</td>
<td>Check hours run since last change of lubricant, the schedule and its basis</td>
</tr>
<tr>
<td>Improper installation of bearings.</td>
<td>Check method of assembly, possible damage or state of cleanliness during assembly and type of bearing used</td>
</tr>
<tr>
<td>Damaged bearings due to contamination.</td>
<td>Check contamination source and replace damaged bearings</td>
</tr>
</tbody>
</table>

Electrical Troubles

<table>
<thead>
<tr>
<th>Electrical Troubles</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong direction of rotation.</td>
<td>Reverse 2 phases on motor terminal box</td>
</tr>
<tr>
<td>Motor running too slow.</td>
<td>Check motor terminal box connections</td>
</tr>
</tbody>
</table>

9.0 Certification

Certificates determined from the contract requirements are provided with these instructions where applicable. Examples are certificates for CE marking, ATEX marking etc. If required, copies of other certificates sent separately to the Purchaser should be obtained from the Purchaser for retention with these User Instructions.

10.0 Other Relevant Documentation and Manuals

10.1 Supplementary user instructions

Supplementary instructions determined from the contract requirements for inclusion into user Instructions such as for a driver, instrumentation, controller, sub-driver, seals, sealant system, mounting component etc are included in the Data Book. If further copies of these are required they should be obtained from the supplier for retention with these user instructions.

Where any pre-printed set of user instructions are used, and satisfactory quality can be maintained only by avoiding copying these, they are included at the end of these user instructions such as within a standard clear polymer software protection envelope.

10.2 Change notes

If any changes, agreed with Flowserve Pump Division, are made to the product after its supply, a record of the details should be maintained with these User Instructions.
10.3 Additional sources of information

Reference 1:

Reference 2:

Reference 3:
ANSI/HI 1.1-1.5
Centrifugal Pumps - Nomenclature, Definitions, Application and Operation.

Reference 4:
ANSI B31.3 - Process Piping.
10.4 Abbreviations

<table>
<thead>
<tr>
<th>Quantity</th>
<th>ISO unit</th>
<th>ISO unit abbreviation</th>
<th>Multiplication Factor (^{1})</th>
<th>US unit</th>
<th>US unit Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>square meter</td>
<td>(m^2)</td>
<td>10.764</td>
<td>square feet</td>
<td>(ft^2)</td>
</tr>
<tr>
<td></td>
<td>square centimeter</td>
<td>(cm^2)</td>
<td>0.155</td>
<td>square inch</td>
<td>(in.^2)</td>
</tr>
<tr>
<td>Capacity or Flow rate</td>
<td>Cubic meter/hour</td>
<td>(m^3/h)</td>
<td>4.4033</td>
<td>US Gallons/minute</td>
<td>US gpm</td>
</tr>
<tr>
<td>Force</td>
<td>Newton</td>
<td>(N)</td>
<td>0.2248</td>
<td>Pound force</td>
<td>(lbf)</td>
</tr>
<tr>
<td>Head</td>
<td>meter</td>
<td>(m)</td>
<td>3.28084</td>
<td>feet</td>
<td>(ft)</td>
</tr>
<tr>
<td>Heat Energy</td>
<td>kilo joule</td>
<td>(kJ)</td>
<td>0.9478</td>
<td>British thermal unit</td>
<td>Btu</td>
</tr>
<tr>
<td>Length</td>
<td>meter</td>
<td>(m)</td>
<td>3.28084</td>
<td>feet</td>
<td>(ft)</td>
</tr>
<tr>
<td></td>
<td>millimeter</td>
<td>(mm)</td>
<td>0.03937</td>
<td>inch</td>
<td>(in.)</td>
</tr>
<tr>
<td></td>
<td>micrometer</td>
<td>(\mu m)</td>
<td>0.0003937</td>
<td>inch</td>
<td>(in.)</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>(kg)</td>
<td>2.20462</td>
<td>pounds</td>
<td>(lb.)</td>
</tr>
<tr>
<td></td>
<td>gram</td>
<td>(g)</td>
<td>0.035274</td>
<td>ounces</td>
<td>(oz.)</td>
</tr>
<tr>
<td>Moment of Inertia</td>
<td>kilogram square meter</td>
<td>(kg.m^2)</td>
<td>23.73</td>
<td>pounds square feet</td>
<td>(lb.ft^2)</td>
</tr>
<tr>
<td>Noise (^4)</td>
<td>decibel</td>
<td>(dBA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>kilowatt</td>
<td>(kW)</td>
<td>1.34102</td>
<td>horsepower</td>
<td>(hp)</td>
</tr>
<tr>
<td>Pressure (^2)</td>
<td>bar</td>
<td>(bar)</td>
<td>14.5</td>
<td>pounds/in.(^2)</td>
<td>psi</td>
</tr>
<tr>
<td>Rotational Speed</td>
<td>revs per minute</td>
<td>(r/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress (^)</td>
<td>Newton/square millimetre</td>
<td>(N/mm^2)</td>
<td>145.0</td>
<td>pounds/in.(^2)</td>
<td>psi</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Celsius</td>
<td>(^\circ C)</td>
<td>((1.8 \times ^\circ C) + 32)</td>
<td>degrees Fahrenheit</td>
<td>(^\circ F)</td>
</tr>
<tr>
<td>Torque</td>
<td>Newton meter</td>
<td>(Nm)</td>
<td>0.7376</td>
<td>pound feet</td>
<td>(lbf.ft)</td>
</tr>
<tr>
<td>Unbalance</td>
<td>gram millimeter</td>
<td>(g.mm)</td>
<td>0.001389</td>
<td>ounce-inch</td>
<td>oz-in.</td>
</tr>
<tr>
<td>Velocity</td>
<td>meter/second</td>
<td>(m/s)</td>
<td>3.28084</td>
<td>feet/second</td>
<td>ft/sec</td>
</tr>
<tr>
<td></td>
<td>millimeter/second</td>
<td>(mm/s)</td>
<td>0.03937</td>
<td>inches/second</td>
<td>in./sec</td>
</tr>
<tr>
<td>Vibration (^3)</td>
<td>millimetre/second</td>
<td>(mm/s)</td>
<td>0.03937</td>
<td>inches/second</td>
<td>in./sec</td>
</tr>
<tr>
<td>Viscosity</td>
<td>square millimetre/second</td>
<td>(cSt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>cubic meter</td>
<td>(m^3)</td>
<td>264.2</td>
<td>US Gallons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>liter</td>
<td>(l)</td>
<td>33.81</td>
<td>fluid ounce</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) multiply the ISO unit by the multiplication factor to obtain US units
\(^2\) where pressure is not stated to be absolute it is gauge
\(^3\) where not stated to be peak it is r.m.s.
\(^4\) sound pressure level \(LpA, re 1m - 20\text{micro}Pa \), or sound power level \(LwA re 1\text{pW when sound power is applicable} \)
AFTERMARKET DIRECTORY

OUR ADDRESS

Flowserve (Austria) GmbH
Industriestraße B/6
A-2345 Brunn/Geb., AUSTRIA

Tel: +43 / 2236 / 31530
Fax: +43 / 2236 / 31940
Mail: FPD-Brunn@flowserve.com

IF YOU NEED ANY INFORMATIONS ON PRICES, QUOTATIONS FOR PARTS, FIELD SERVICE, REPAIRS... PLEASE CONTACT DIRECTLY OUR SPECIALISTS BY DIALING OUR PHONE NUMBER AND HIS EXTENSION

<table>
<thead>
<tr>
<th>MANAGER</th>
<th>EXT. 297</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTS QUOTATIONS</td>
<td>EXT. 236</td>
</tr>
<tr>
<td>PARTS ORDER HANDLING</td>
<td>EXT. 237</td>
</tr>
<tr>
<td>FIELD SERVICE / REPAIRS</td>
<td>EXT. 205</td>
</tr>
<tr>
<td>SECRETARY</td>
<td>EXT. 232</td>
</tr>
<tr>
<td>EXPORT / INVOICING</td>
<td>EXT. 238</td>
</tr>
</tbody>
</table>

MESSAGES CAN BE LEFT ALSO ON OUR ANSWERING MACHINE

IMPORTANT NOTES:

PLEASE NOTE, THAT WARRANTY EXPIRES:
- USE OF NON GENUINE FLOWSERVE AUSTRIA PARTS FOR MAINTENANCE AND REPAIRS
- NO USE OF OUR SERVICE PERSONAL IN CASE OF REPAIRS DURING WARRANTY PERIOD

RECOMMENDATION:
- STARTUP AND COMMISSION SERVICE DIAL: EXT 205
- PLEASE ASK FOR OUR SPECIAL RATES
- PLEASE ASK ALSO AFTER THE WARRANTY PERIOD FOR OUR SERVICE PERSONAL FOR REPAIRING AND SERVICING YOUR PUMPS

Please quote your service:

Name of Company: ………………………
Contact person: ………………………
Telephone: ……………………………
Fax: ………………………………………
e-mail: …………………………………
Country: ………………………………

Pumpdata:
Type: ……………………………
Serialno.: ……………………………

Customer Service Fax: +43-2236-31940
Your Flowserve factory contacts:

Flowserve (Austria) GmbH
Industriestraße B6
2345 Brunn am Gebirge
Austria

Telefon: +43 2236 31530
Fax: +43 2236 377 540
Service & Repair Fax: +43 2236 31582
E.mail: FPD-Brunn@flowserve.com

Flowserve REGIONAL SALES OFFICES:

USA and Canada
Flowserve Corporation
5215 North O’Connor Blvd.,
Suite 2300
Irving, Texas 75039-5421 USA
Telephone 1 972 443 6500
Fax 1 972 443 6800

Europe, Middle East, Africa
Worthing S.P.A.
Flowserve Corporation
Via Rossini 90/92
20033 Desio (Milan) Italy
Telephone 39 0362 6121
Fax 39 0362 303396

Latin America and Caribbean
Flowserve Corporation
6840 Wynnwood Lane
Houston, Texas 77008 USA
Telephone 1 713 803 4434
Fax 1 713 803 4497

Asia Pacific
Flowserve Pte. Ltd
200 Pandan Loop #06-03/04
Pantech 21
Singapore 128388
Telephone 65 6775 3003
Fax 65 6779 4607